修香恋
本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 
在学习、工作中,大家都经常看到论文的身影吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。如何写一篇有思想、有文采的论文呢?下面是我整理的数学教学议论文范文,仅供参考,欢迎大家阅读。 《数学课程标准》明确指出:义务教育阶段的数学课程,其基本出发点是推动学生全面、持续、和谐的发展,它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际理由抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。因此,我们要充分注意学生各种能力的培养,从实际出发,努力激发学生的学习兴趣,充分调动学生的学习积极性和主动性,教会学生学习,教会学生深思,教会学生探索,使学生真正成为学习的主人,在新课标的指导下,我认为新的课堂教学应该注意以下理由: 一、激发学生潜能,鼓励探索创新 建构主义学习理论认为,知识不是通过教师传授而得到的,而是学习者在一定的社会文化背景下,借助其他人(包括教师、家长、同学)的帮助,利用必要的学习资源,主动地采用适合自身的学习策略,通过作用建构的方式而获得的,这要求教师在课堂教学中,要根据教学内容创设情境,激发学生的学习热情,挖掘学生的潜能,鼓励学生大胆创新与实践,要让学生在自主探索和合作交流过程中获得基本数学知识和技能,使他们觉得每项知识都是他们实践创造出来的,而不是教师强加给他们的。 二、转变教育观念,发扬教学民主 数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,在教学过程中,教师要转变思想,更新教育观念,把学习的主动权交给学生,鼓励学生积极参与教学活动,教师要走出演讲者的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者,学生能自己做的事教师不能代劳,教师的主要任务应是在学生的学习过程中,在恰当的时候给予恰当的引导与帮助,要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。例如在学习同类项概念时,我针对初一学生的年龄特点,组织找同类项朋友的游戏。具体做法是这样的:把事先准备好的配组同类项卡片发给每个学生,一个同学找到自己的同类项朋友后,被挤出座位的另一个学生再去找自己的同类项朋友,比一比谁找得既快又准。这种生动的形式和有趣的策略能使学生充分活动,学习兴趣大增,学生在愉悦的气氛中掌握了确定同类项的策略和合并同类项的法则。 三、联系生活实际,培养学习兴趣 某些学生不想学习或讨厌学习,是因为他们觉得学习枯燥无味,认为学习数学就是把那些公式、定理、法则和解题规律记熟,然后反反复复地做题。新教材的内容编排切实体现了数学来源于生活又服务于生活的思想,通过生活中的数学理由或我们身边的数学事例来阐明数学知识的形成与发展过程,在教学过程中,教师要利用好教材列举的与我们生活息息相关的数学素材和形象的图表来培养学生的学习兴趣。教师要尊重学生,热爱学生,关心学生,经常给予学生鼓励和帮助,学习上要及时总结表彰,使学生充分感受到成功的喜悦,感受到学习是一件愉快的事情,要通过自己的教学,使学生乐学、愿学、想学,感受到学习是一件很有趣的事情,值得为学习而勤奋,不会有一点苦的感觉。 例如在学习实践与探索中的储蓄理由时,我提前一周布置学生到本镇的几家银行去调查有关不同种类储蓄的利率理由。教学中,让每个学生先展示自己所到银行收集到的各种各样有关储蓄的信息,然后再按每四人一组根据收集到的信息编写有关储蓄的应用题,教师可以有选择地展示学生的学习成果,让全班学生相互讨论、合作攻关,最后选派一些小组的代表作总结发言,老师点评,对做得较好的同学进行表扬。通过这样教学,学生在愉快中学到了知识,收到了良好的效果。 新教材中编排的有关内容,如地砖的铺设、图标的收集、打折销售等等,教师都可以充分利用,让学生走出课堂去学习,体会数学与生活的密切联系,培养学生的学习兴趣。 四、关注个体差异,促使人人发展 《数学课程标准》指出:数学教育要面向全体学生,实现:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,数学教育要推动每一个学生的发展,即要为所有学生打好共同基础,也要注意发展学生的个性和特长,由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,教师在教学中要承认这种差异,因材施教,因势利导,要从学生实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和策略,满足他们的学习需求,发展他们的数学才能。 新教材设计了不少如深思、探索、讨论、观察、试一试、做一做等理由,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生,在让学生独立深思时,要尽量多留一些时间,不能让优等生的回答剥夺差生的深思,对于数学成绩较好的学生,教师也可另外选择一些较灵活的理由让他们深思、探究,以扩大学生的知识,提高数学成绩。 五、媒体辅助教学,提高教学效益 《数学课程标准》指出:教师要充分利用现代教育技术辅助教学,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决理由的有力工具,致力于转变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。因此,在课堂教学中,教师要根据教学内容恰当地运用计算机进行辅助教学,为学生提供更为广阔的自由活动的时间和空间,提供更为丰富的数学学习资源。
国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学!