期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    116

biking
首页 > 期刊问答网 > 期刊问答 > 模糊数学的论文选题方向是什么

4个回答 默认排序1
  • 默认排序
  • 按时间排序

ruifeng

已采纳
模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、控制、遥感、教育、体育等方面取得具体的研究成果。扩展资料应用前景:模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。50年来,模糊数学的研究和应用取得了许多可喜的成就。它在科学技术领域和日常生活方面正在扮演着越来越重要的角色。

模糊数学的论文选题方向是什么

333 评论(15)

老赵师傅

1、模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展2、模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。第三,研究模糊数学的应用。3、模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。
250 评论(14)

ZY1015YX

二十世纪六十年代,产生了模糊数学这门新兴学科。 模糊数学的产生 现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。 但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。 在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。 各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。 我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。 在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。 人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 模糊数学的研究内容 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。 模糊数学的研究内容主要有以下三个方面: 第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。 在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为5,即“半老”,60岁属于“老”的程度8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。 第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。 为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。 如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。 人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。 为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。 第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。
354 评论(15)

ALFRED55555

模糊数学在人工智能中的应用举个例子: 判断一个人是不是秃子,假设500根头发以下算秃子 那么计算机会认为499根是秃子,501根不是秃子,可是我们人会认为多一根也是秃子呀?那502根呢?503……那我们都是秃子…… 那么用模糊数学这个结论是什么呢?499根是秃子的几率100%,501根,99% 10000根呢?嗯,001%的可能性是秃子。模糊数学的主要应用 模糊数学自身的理论研究进展迅速。我国模糊数学自身的理论研究仍占模糊数学及其应用学科的主导地位,所取得的研究成果在《模糊数学》、《模糊系统与数学》等数十种学术期刊和全国高校学报中经常可见,模糊聚类分析理论、模糊神经网络理论和各种新的模糊定理及算法不断取得进展。 模糊数学目前在自动控制技术领域仍然得到最广泛的应用,所涉及的技术复杂繁多,从微观到宏观、从地下到太空无所不有,在机器人实时控制、电磁元件自适应控制、各种物理及力学参数反馈控制、逻辑控制等高新技术中均成功地应用了模糊数学理论和方法。 模糊数学在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展,如图像和文字的自动辨识、自动学习机、人工智能、音频信号辨识与处理等领域均借助了模糊数学的基本原理和方法。 模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学、安全与劳动保护等领域,如房地价格、期货交易、股市情报、资产评估、工程质量分析、产品质量管理、可行性研究、人机工程设计、环境质量评价、资源综合评价、各种危险性预测与评价、灾害探测等均成功地应用了模糊数学的原理和方法。 地矿、冶金、建筑等传统行业在处理复杂不确定性问题中也成功地应用了模糊数学的原理和方法,从而使过去凭经验和类比法等处理工程问题的传统做法转向数学化、科学化,如矿床预测、矿体边界确定、油水气层的识别、采矿方法设计参数选择、冶炼工艺自动控制与优化、建筑物结构设计等都有应用模糊数学的成功实践。 我国医药、生物、农业、文化教育、体育等过去看似与数学无缘的学科也开始应用模糊数学的原理和方法,如计算机模糊综合诊断、传染病控制与评估、人体心理及生理特点分析、家禽孵养、农作物品种选择与种植、教学质量评估、语言词义查找、翻译辨识等均有一些应用模糊数学的实践,并取得很好效果。李洪兴教授,他领导的科研团队采用“变论域自适应模糊控制理论”成功地实现了全球首例“四级倒立摆实物系统控制”。据介绍,倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。目前,实现三级倒立摆控制的实物系统仍然是世界公认的难题,而要实现四级倒立摆控制实物系统,在世界范围内更是一项空白。北师大模糊系统与模糊信息研究中心暨复杂系统智能控制实验室采用李洪兴教授提出的“变论域自适应模糊控制”理论,先后成功地实现了四级倒立摆控制仿真实验、三级倒立摆实物系统控制,并于今年8月11日实现了全球首例四级倒立摆实物系统控制。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
83 评论(9)

相关问答