期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    169

@追梦人@
首页 > 期刊问答网 > 期刊问答 > 流体动力学论文题目有哪些类型

3个回答 默认排序1
  • 默认排序
  • 按时间排序

苍枫Eureka

已采纳
可压缩流与不可压缩流所有流体某种程度上而言都是可压缩的,换言之,压力或温度的改变会造成流体密度的改变。然而,许多情况下,压力或温度改变所造成的密度改变相当微小,是可以被忽略的。此种流体可以用不可压缩流进行模拟,否则必须使用更普遍性的可压缩流方程式进行描述。数学上而言,不可压缩性代表着流体流动时,其密度维持不变,换言之:其中,D / Dt为对流导数(convective derivative)。此条件可以简化许多描述流体的方程式,尤其是运用在均匀密度的流体。对于气体要辨别是否具有可压缩性,马赫数是一个衡量的指标。概略来说,在马赫数低于3左右时,可以用不可压缩流的行为解释。至于液体,较符合可压缩流还是不可压缩流的性质,主要取决于液体本身的性质(特别是液体的临界压力与临界温度)和流体的条件(液体压力是否接近和液体临界压力)。 声学的问题往往需要引进压缩性的考量,因为声波算是可压缩波,其性质会随着传播的介质以及压力变化而改变。黏性流与非黏性流当流体内的阻力越大时,描述流体须考虑其黏性的影响。雷诺数可用来估算流体的黏性对描述问题的影响。所谓史托克流指雷诺数相当小的流动。在此情况,流体的惯性相较于黏性可忽略。而流体的雷诺数大代表流体流动时惯性大于黏性。因此当流体有很大的雷诺数,假设它是非黏性流,忽略其黏性,可当成一个近似。 这样的近似,当雷诺数大时,可得到很好的结果。即使在某些不得不考虑黏性的问题(例如边界问题)。在流体与管壁的边界,有所谓的不滑移条件,局部会有很大的速率应变率,使得黏性的作用放大而有涡度,黏性因而不可被忽略。 因此,计算管壁对流体的净力,需要使用黏性方程式。如同达朗白谬论的说明,物体在非黏性流里,不会感受到力。尤拉方程是描述非黏性流的标准方程式。在这种情况,一个常使用的模型,使用尤拉方程描述远离边界的流体,在接触的边界,使用边界层方程式。 在某一个流线上,将尤拉方程积分,可得到白努利方程。如果流体每一处都是无旋转涡动,白努利方程可描述整个流动。稳定流与非稳定流流体速度和压力随时间而改变的流动称为非稳定流。非稳定流的速度和压力不仅要考虑位置,同时也要考虑时间的影响。流体速度和压力均不随时间而改变的流动称为稳定流。层流乱流当流动由漩涡和明显的随机性所主导时,此种流动称为乱流。当乱流效应不明显时,则称为层流。然而值得注意的是,流动之中存在于漩涡不一定表示此流动为乱流──这些现象可能也存在于层流之中。数学上,乱流通常以雷诺分离法来表示,也就是乱流可以表示成稳定流与扰动部分的和。乱流遵守纳维-斯托克斯方程式。数值直解法(Direct numerical simulation,DNS),基于纳维-斯托克斯方程式可应用在不可压缩流,可使用雷诺数对乱流进行模拟(必须在电脑性能与演算结果准确性均能负荷的条件下)。而此数值直解法的结果,可以解释所得的实验资料。然而,大部分我们有兴趣的流动都是雷诺数比DNS能够模拟的范围大上许多,即使电脑性能在接下来的数十年间持续发展,仍难以实行模拟。任何飞行交通工具,要足够能承载一个人(L >3 m)以72 km/h (20 m/s)的速度移动,此情况都远远在DNS能够模拟的范围之外(雷诺数为4百万)。像是空中巴士A300或波音747这类的飞行工具,机翼上的雷诺数超过4千万(以翼弦为标准)。为了能够处理这些生活上实际的问题,需要建立乱流模型。雷诺平均纳维-斯托克斯方程式(Reynolds-averaged Navier-Stokes equations) 结合了乱流的效果,提供了一个乱流的模型,将额外的动量传递表示由雷诺应力所造成;然而,乱流也会增加热传与质传速度。大涡数值模拟计算(Large eddy simulation,LES)也是一个模拟方法,外观与分离涡流模型(detached eddy simulation, DES)甚相似,是一种乱流模拟与大涡数值模拟计算的结合。

流体动力学论文题目有哪些类型

86 评论(14)

赵跃龙

流体动力学(Fluid dynamics)是流体力学的一门子学科。流体动力学研究的对象是运动中的流体(流体指液体和气体)的状态与规律。 流体动力学底下的小学科包括有空气动力学(研究气体)和 hydrodynamics(研究液体)。 流体动力学有很大的应用,在预测天气,计算飞机所受的力和力矩,输油管线中石油的流率等方面其中的的一些原理甚至运用在交通工程交通运输本身被视为一连续流体,解决一个典型的流体动力学问题,需要计算流体的多项特性,包括速度,压力,密度,温度 ==流体动力学的方程式== 理想气体方程式 PV=nRT P是压力,V是气体所占体积,n是摩尔数,R是 理想气体常数,T是温度
110 评论(12)

yangdatcl

自从动力学被引入到矿床学,日益受到重视。20世纪90年代构造动力学和流体动力学对成矿作用研究已有许多文献,但对基本矿化类型,特别是复式矿化类型动力学研究,还刚起步。一般认为,断裂构造动力是脉型金矿化首要条件,成矿流体动力是重要条件。下面以构造动力学和流体动力学探讨脉型矿化类型动力学机制。断裂构造动力学机制李四光(1972)曾强调,关于压、张、扭破裂结构面分析是研究地质构造形迹的极重要的基本问题(压、张、扭破裂结构面不仅是主要构造形迹之一,而且由此可以反推构造动力及其演化。笔者注)。统观我国金矿床大量控矿断裂资料发现,张剪性和压剪性断裂出现频率最大。故以两者为主探讨断裂构造动力对基本矿化类型的控制问题。(1)断裂分形结构分形现象在自然界非常普遍,尤其地学领域(因地学研究对象普遍存在不规则性、近相似性、高度分割性及幂函数关系等)。例如地壳普遍存在的断裂现象,委实分形现象。但这多指断裂的分布和几何形状而言。具体地说,是把断裂视为线段的分布和几何形状,而未涉及断裂内部的性质和结构。然而,任何性质和规模的断裂构造均有其内部的组成、性质和结构。主要由破裂面和断层岩组成的断裂内部结构,按分形定义,当属分形结构。这里所说的断裂分形结构均指内部结构。(2)断裂分形结构空间状态概念模型断裂分形结构主要有连通自由空间和连通弥散空间两种空间状态概念模型,分别与张剪性和压剪性断裂相对应。1)连通自由空间型分形结构。主要由陡倾的断裂面和张剪性单体破裂面组成,其次为裂隙带及次生透入性面理,再次为构造角砾岩。当这些穿透性和分割性较强的分划性结构面互相连通时,就形成规模较大结构复杂的连通自由空间。构造形迹是构造力学性质和活动历史的记录。形成连通自由空间的断裂力学性质为张剪性,亦即张剪性断裂活动是形成连通自由空间型断裂分形结构的构造动力学机制。在张剪性断裂构造动力作用下,产生的构造扩容直接引发两种效应:一是因扩容消耗一部分能量,造成应力衰减。二是因扩容而减压,造成抽吸效应。抽吸成矿流体进入破裂扩容空间,充填成脉型矿化。成矿流体被抽吸到扩容空间后,流体压力便转化为拓宽扩容空间。也就是说,在构造扩容过程中,就包含着流体充填的作用;在流体充填过程中,又孕育着构造扩容的因素。这样,构造扩容与流体充填的周期性重复,构成了脉型矿化的扩容-充填机制。它持续的时间、频率和幅度,主要取决于张剪性断裂构造动力大小和成矿流体充足与否。2)连通弥散空间型分形结构。由碎裂岩系和压剪性破裂结构面组成,具有高渗透率的多孔介质的特点。显然,压剪性断裂活动乃是形成连通弥散空间型分形结构的构造动力学机制。压剪性断裂构造动力通过碎裂作用产生的碎基由少到多、碎块由大到小、结构由简到繁、由脆性变形向塑性变形过渡的变形递进。所以,可将脆性碎裂变形机制,称为构造碎裂递进变形机制,它控制着蚀变岩型矿化。当观察矿脉的露头或掌子面矿化蚀变时,发现矿化蚀变强度总是随着碎裂岩粗碎屑粒度的变小而增大的普遍现象。研究结果表明,矿化蚀变强度实际是与连通弥散空间中流体的接触面积正相关。接触面积与同等体积的岩块被分割的粒度和形体有关。与粒度关系:设1边长(L)为4mm的立方体岩块,则其面积为96mm2,将其依次分割成边长为L/2,L/4……的小立方体,则其总面积依次为192mm2,384mm2……计算结果证明,当缩短立方体边长原边长的1/n时,则小立方体的总面积以n倍增加。所以,碎裂岩粗碎屑粒度越小矿化蚀变强度越大。但是,当碎屑粒度小到超碎裂岩和断层泥时,由于渗透性差,蚀变和矿化强度骤然下降,甚至不遭受蚀变也不矿化。可见,构造强度控矿并不意味着其强度越大矿化程度越高,而必须适度。与形体关系:柯真奎(1997)设体积均为1的球体、正八面体、立方体、正四面体,则它们的表面积分别为836,719,6,201。计算结果证明碎屑物形体越接近球体,则表面积越小,反之越大。因此,碎裂成片状、扁豆状岩石矿化蚀变强度较大。而越靠近主断面碎屑粒度越小、形体越扁,所以矿化蚀变强度越大。成矿流体动力学机制所谓成矿流体流动,不同于一般流体流动。金矿成矿流体通常为中低温压、中密度、低盐度的气液相在断裂分形结构空间中极其缓慢地黏性流动。制约成矿流体流动有诸多因素,因此有多种流动方式。为研究方便概括出弥散、扩散(渗透)、平流扩散、对流、紊流等5种流动方式,即流体动力学机制。(1)连通自由空间中流体动力学机制成矿流体进入连通自由空间形成的矿脉包括巨脉、大脉、中脉、小脉等脉型。脉宽不同,其流体动力学机制不同。流体动力学机制取决于流动空间状态,即流动通道空间状态、封闭系统大小和通道岩石性质,不过后两者在一条断裂中变化小,忽略不计。因此,流体动力学机制主要取决于流动通道的空间状态,具体指通道宽度和弯曲度,其中宽度最重要。如果把脉宽视为通道近似宽度的话,则不同宽度的脉型的流体动力学机制不同。现举例说明如下。细脉的流体动力分形对流机制:对流,指成矿流体在连续自由空间型断裂分形结构中流动到通道一定宽度(超过平流临界值)时,流动迹线不平行,流体质点混杂,即流体失稳,呈非平衡态或周期性震荡。通道宽度变化导致流速变化和差异性运动是产生对流的主因。流体在断裂分形结构中流动而具分形特征,故称分形对流机制。巨脉或大脉的流体动力分形紊流机制:当通道再度变宽,超过对流临界值时,流动状态将十分复杂,最终进入混沌状态,成矿流体变为分形紊流运动。也可能出现对流与紊流并存的双流动状态,即混合流。总之,流动通道宽度越大,流速和流动差异性越大,流动状态越复杂。(2)连通弥散空间中流体动力分形弥散机制目前,关于金矿床矿化类型的流体动力分形弥散机制的研究成果,尚未见到报道,但其他内生金属矿床已有报道。於崇文(1999)研究了江西德兴斑岩铜矿田成矿作用的流体动力分形弥散机制。德兴铜矿田与本书蚀变岩型金矿床虽然矿种不同,但是,它们在控制流体动力起关键作用的分形特征和分形结构方面是相同的。因此铜矿田多孔介质中分形弥散的一维和二维概念模型,均适用于脉状蚀变岩型金矿床。也就是说,连通弥散空间中流体动力分形弥散机制是应当成立的。控型实例及启示陈光远等(1989)对胶东玲珑、栖霞(A型)与夏甸、三山岛(D型)金矿床的矿物特征和理化条件进行详细对比后认为,不同地质构造环境是控制石英脉型和蚀变岩型的主导因素。石英脉型与脉状蚀变岩型金矿床分别是张剪性断裂与压剪性断裂两种不同构造环境的产物。在黄铁矿特征方面:D型中黄铁矿粒度变化大,01~5mm,A型中01~1mm;D型中歪晶、连生晶和大指数的{hkb}较多,A型中较少;D型中晶面条纹发育,晶面较粗糙,A型中相对光滑;D型中四角三八面体、三角三八面体和偏方复十二面体的单形晶较少,A型中较多。在石英气液包裹体方面:玲珑(A型)与夏甸(D型)金矿床的多数项不同。如气液比A型20%~50%;D型0~30%。大小(μm)A型2~50;D型5~5。形态A型规则为主;D型不规则为主。负晶A型无—少见;D型少见—常见。上述实例,是否表明构造动力和流体动力不仅控制矿化类型,进而控制其矿物特征及包裹体特征,但控制程度由矿化类型到包裹体特征有减弱趋势。提示我们,断层力学性质控制矿化类型也有限度。基本矿化类型动力学模式以上论述了构造动力,断裂分形结构,成矿流体动力和基本矿化类型,它们活动时间的先后,空间的互相变化及其之间的内在联系,概括在基本矿化类型动力学模式图(图1-3)中。图1-3 基本矿化类型动力学模式图从图1-3横向看,张剪性断裂与压剪性断裂,连通自由空间与连通弥散空间,紊流与弥散,A型与D型的关系,在图上均处于两个端元的对立的位置,而在它们之间的渐变性和分带性又把它们联系起来。纵向看,如图1-3右列:压剪性断裂,连通弥散空间,弥散,D型的关系,前者是后者产生或形成的原因和条件,后者是前者发展或演变的结果和表象,反映了矿化作用的演变过程和因果关系。纵横综观,则集中反映了基本矿化类型及其时空结构三者的内在联系和本质规律。并由此看到,构造动力和流体动力作用在诸多因素参与的基本矿化类型形成的过程中,贡献最大。从这个意义上说,构造动力和流体动力确实是形成基本矿化类型的一对基本控矿控型因素。而断裂构造不仅为流体的运移和赋存提供了空间,而且制约着流体运移势,流向及流入空间(当然流体运移也影响断裂活动,详见第三章含金流体),从这个意义上说,断裂构造活动的确是金矿化的首要条件。
107 评论(14)

相关问答