yoyozhying
风能是最清结、无污染的可再生能源之一。据专家们的测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。据有关部门预测,我国可利用风能资源约为16亿千瓦,其中有很好利用价值的约为2 53亿千瓦。 风力发电有横轴型风力发电机和垂直轴型风力发电机两种。风力发电装置一般由风轮、传动系统、发电机、储能设备、控制保护系统和塔架等组成。它最适宜的风速范围是6~8米/秒,当然需要有较充足和稳定的风源。通常按团米/秒最大风速设计叶片转速,如果风速超过工作范围时,为了保护发电机应能自动减速,当风速达到台风般的速度时,叶片则自动停止运转。当风力机在运行中由于各种原因而甩负荷时,也会由于风叶超速而自动减速。由于采用了叶顺浆机构或阻力装置,或是由安装在传动轴上的紧急制动闸等方式来实现自动保护,风力发电机的单机容量越来越大,技术水平越来越高,成本越来越低。 第二次工业革命以电力的广泛应用为显著特点。早在1831年,英国科学家法拉第发现了电磁感应现象,提出了发电机的理论基础。科学家们根据这一发现,从19世纪六七十年代起对电作了深入的探索和研究,出现了一系列电气发明。1866年德国人西门子制成发电机。19世纪70年代,实际可用的发电机问世。这一时期,能把电能转化为机械能的电动机也被发明出来,电力开始用于带动机器,成为补充和取代蒸汽动力的新能源。随后,电灯、电车、电钻、电焊等电气产品如雨后春笋般地涌现出来。但是,要把电力应用于生产,还必须解决远距离输送问题。1882年,法国人德普勒发现了远距离送电的方法,美国科学家爱迪生建立了美国第一个火力发电站,把输电线联接成网络。电力是一种优良而价廉的新能源。它的广泛应用,推动了电力工业和电器制造业等一系列新兴工业的迅速发展。人类历史从“蒸汽时代”跨入了“电气时代”。 此后,(一)水力发电:当位於高处的水(具有位能)往低处流动时位能转换为动能,此时装设在水道低处的水轮机,因水流的动能推动叶片而转动(机械能),如果将水轮机连接发电机,就能带动发电机的转动将机械能转换为电能,这就是水力发电的原理水力发电一般可分为川流式,水坝(库)式及抽蓄式发电抽蓄式发电是在白天用电尖峰时水库放水发电,夜间时则利用过剩的电力,把水抽上水库(电能转换为位能),以供白天用电尖峰时发电_ (三) 火力发电:_利用燃烧煤炭,石油,液化天然瓦斯等燃料所产生的热能,让水受热而成为蒸汽,在不断受热下,使水变成高压高温的蒸汽,然后运用此高温高压蒸汽的能量,推动汽轮机运转带动发电机发电此外内燃机发电亦是火力发电的一种,一般以柴油为燃料的内燃机(引擎)为动力,带动发电机运转发电此种发电方式主要使用於用电量小的离岛,或是作为大楼及工厂等之紧急发电机用_ 一,发电系统(电力的制造工厂) (四) 其他发电方式: _风力发电:利用风力转动风车发电,在台湾由於风力发电条件不足,目前仅在澎湖离岛有示范性的风力发电运转 太阳能发电:利用聚热装置,将太阳热能聚集以产生蒸汽,带动涡轮发电机产生电力此外尚有潮汐发电,海洋温差发电,波浪发电,地热发电等发电方式,惟目前世界各国,仅为研究发展阶段,距商业运转尚为遥远 
大型风力发电机组并网运行的探讨 1 风力发电机的并网 风力发电机组是将风能转换成电能的装置,系统包括发电机、增速箱、刹车、偏航、控制等几大系统。直接与电网相连接的是异步发电机。下面以甘肃玉门风力发电场的金风S43/600风机为例说明并网问题。 异步发电机结构简单,其发电的首要条件是要吸收无功来建立磁场,如果没有无功来源,也就是说没有电网,异步发电机是没有能力发电的。 风机从系统吸收无功,必然会造成系统的电压降低和线损的增加,所以每台风力发电机都设有无功补偿装置,最大无功补偿容量是根据异步发电机在额定功率时的功率因数设计的,一般为> 98。 但由于风力发电机的无功功率需求随有功变化,如图1所示,因此,风机每个瞬时的无功需求量也都不同,该风机补偿分为4组固定的容量(600kW风机:5 kVA、50 kVA、25 kVA、5kV - A),在每个补偿段内,不足部分无功从电网吸收。 单台风力发电机组自身有较全的保护系统,风机主电路出口处装有速断和过流保护,其定值分别为2倍的额定电流、Os动作和5倍额定电流、12 s动作。风机还有灵敏的微机保护功能,设有三相电流不平衡,缺相,高压、低压,高周、低周,功率限制等项保护。因此当风电场内或电力系统发生故障时,风机的保护动作非常迅速,保证电网和风电场的安全。 由于异步电机在启动时冲击电流较大,最大可以达到额定电流的5~7倍,对电网会造成冲击。为解决以上问题,现在设计的风力发电机有性能优越的软并网控制电路。目前软并网的控制方式有两种:电压斜坡方式和限流方式。软并网过程可以做得很平稳,整个软启动的过程可以在十几个周波到几十个周波内完成,最高峰值电流可以限定在额定电流之内。图2是记录的S43/600风机并网时的电流实际波形,采样电流幅值衰减20倍。风机的软启动电流限制在500 A内(小于额定电流),启动过程约40个周波。 另外,目前风电场占系统的容量很小,而且风电场的容量利用系数较低,因此风电负荷的变化不会对系统的周波造成较大的影响。2风电场并网中应注意的几个技术问题1 继电保护 在设置保护和确定保护定值时应考虑以下因素。 目前一般风机出口电压是低压系统,从35 kV侧的等值电路来看,风机及相应的低压电缆相当于一个很大的限流电抗,短路电流无法送出。 风力发电机为异步发电机,当系统短路时,风机出口电压大幅度下降,没有了励磁磁场,则风机无法发电。风机自身具有全面的微机保护。 由于以上特点,在考虑电网继电保护和风电场的继电保护方案时,只需设置速断和过流保护,定值考虑躲过风电场最大负荷电流即可。2 电网电压的调整 有些风电场处于电网末端,电压较低,在进行风电场设计时有一项很重要的工作就是变压器电压分接头设计。既要保证风机的出口电压,又要确保线路上其他用户的要求。 在设计时要认真调查不同季节、不同时间(白天与晚上的负荷)距离风电场最近的线路末端节点电压的变化值,并根据该电压值来设计电压分接头,风力发电机作为电源,其电压允许的偏差值为额定电压的+10%至-5%,如果电压低于额定值,则输送同样功率时电流值就会增加,从而引起线路损耗的增加。另一方面,低电压还会引起软启动电流值的增加。在风电场接入电网调试期间,应反复测量变电站低压侧电压,合理选择分接开关位置,以确保风机出口电压在规定的范围之内。3 风电场的无功补偿 风电的无功需求特点如下:在停风状态下也保持与电网的联接并从系统吸收无功。 风机的无功需求量随着有功变化而变化,一部分通过自身的无功补偿装置补偿。但在无功补偿的4组固定的容量之间,仍需从电网吸收部分无功。 风电场的无功造成的影响如下:①风电场的无功变化在满发时会抬高风机出口电压,在并网时会在瞬间较大幅度降低出口电压。②对线路及变压器损耗的影响。由于风电场设备长期并网,无论是否发电,变压器都要向系统吸收一定的无功,其数量大约是变压器容量的1%—4%。此外,随着风机有功出力的变化,无功需求也在变化,当风机本身的无功补偿不足以补偿这些无功变化时,就需从电网吸收无功,这些无功在流经线路时也会引起线路损耗。风电场中的风机是分散排布的,其间隔距离较大,因此从系统吸收无功所经的线路较长,又会增加一定的线路或变压器损耗。 综上所述,风电场的无功补偿是一项有经济效益的工作,除了风机内的补偿外,在每台箱式变压器低压侧根据变压器的空载电流大小增加一组补偿电容器并长期投入,容量按照变压器空载无功功率选取: 以红松风力发电场用的1 600/ 5/ 69箱式变压器为例,空载电流为 6%,空载损耗11 kW,视在额定功率1 600 kV.A,变压器空载无功约为 37 kV -A。 另在35 kV升压站内增加无功补偿装置,以弥补由于出力变化引起的无功变化,从而起到降低线路损耗的作用。3结论 大型风力发电机组在并网时选择合适的继电保护装置、合理地调整电网电压、配备足够的无功补偿装置,就能顺利并网。理论和实践都已证明风力发电的并网过程比较简单,不会对电网产生影响。 本文选自591论文网591LW:专业 代写毕业论文 -致力于代写毕业论文,代写硕士论文,代写论文,代写mba论文,论文代写