傅洁玉
GPS技术在公路测量中的应用前景及现状摘要:GPS技术应用于公路测量是公路外业勘测的一项重大技术革命,其应用及开发的前景十分广阔。尤其是实时动态(RTK)定位技术在公路测量中蕴含着巨大的技术潜力,本文主要介绍了GPS中的RTK技术在公路测量中的应用及其对公路勘测的巨大推进作用。 关键词:GPS;RTK;静态定位;动态定位 1、GPS技术发展现状 全球定位系统GPS(GlobalPositioningSystem)是美国陆海空三军联合研制的卫星导航系统,具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间。单点导航定位与相对测地定位是GPS应用的两个方面;对常规测量而言相对测地定位是主要的应用方式。 相对测地定位是利用L1和L2载波相位观测值实现高精度测量,其原理是采用载波相位测量局域差分法:在接收机之间求一次差,在接收机和卫星观测历元之间求二次差,通过两次差分计算解算出待定基线的长度;求解整周模糊度是其关键技术,根据算法模型,设计了静态、快速静态以及RTK等作业模式。静态作业模式主要用于地壳变形观测、国家大地测量、大坝变形观测等高精度测量;快速静态测量以其高效的作业效率与厘米级精度广泛应用于一般的工程测量;而RTK测量以其快速实时,厘米级精度等特点广泛应用于数据采集(如碎部测量)与工程放样中。RTK技术代表着GPS相对测地定位应用的主流。 GPS测地型接收设备是实现测地定位的基本条件,接收机有单频与双频之分,双频机能以L2观测值修正电离层折射影响,最适宜于中、长基线(大于20km)测量,具有快速静态测量的功能,可升级为RTK功能;单频机适宜于小于20km的短基线测量,对于一般工程测量具有良好的性能价格比。RTK系统由GPS接收设备、无线电通讯设备、电子手薄及配套设备组成,整套设备在轻量化、操作简便性、实时可靠性、厘米级精度等方面的特点,完全可以满足数据采集和工程放样的要求。鉴于GPS系统在轨卫星数有限,在对空通视受遮挡的条件下,不能保证正常解算,影响定位的精度和可靠性。实践表明,单频GPS系统由于多环境的制约,存在着很大的局限性。随着俄罗斯的全球导航卫星系统(CLONASS)的不断完善,利用GLONASS来改善GPS性能的双星座系统(GLONASS+GPS)已由美国Ashtech公司研制成功,这种全天候、全地域、高精度的系统为用户提供了更为完善的接收设备,双星座系统的接收设备GPS接收设备的新水平。 2、GPS技术在公路测量中的应用前景 随着我国国民经济的快速增长的西部大开发的实施,我省的高等级公路建设迎来前所末有的发展机遇,这就对勘测设计提出了更高的要求,随着公路设计行业软件技术和硬件设备的发展,公路设计已实现CAD化,有些软件本身还要求提供地面数字化测绘产品的支持;建立勘测、设计、施工、后期管理一体化的数据链,减少数据转抄、输入等中间环节,是公路勘测设计“内外业一体化”的要求,也是影响高等级公路设计技术发展的“瓶颈”所在。目前公路勘测中虽已采用电子全站仪等先进仪器设备,但常规测量方法受横向通视和作业条件的限制,作业强度大,且效率低,大大延长了设计周期。勘测技术的进步在于设备引进和技术改造,在目前的技术条件下引入GPS技术应当是首选。当前,用GPS静态或快速静态方法建立沿线总体控制测理,为勘测阶段测绘带状地形图,路线平面、纵面测量提供依据;在施工阶段为桥梁,隧道建立施工控制网,这仅仅是GPS在公路测量中应用的初级阶段,其实,公路测量的技术潜力蕴于RTK(实时动态定位)技术的应用之中,RTK技术在公路工程中的应用,有着非常广阔的前景。下面就RTK技术在公路勘测中的应用作简单的介绍。 3、RTK技术在公路测量中的应用 1 实时动态(RTK)定位技术简介 实时动态(RTK)定位技术是以载波相位观测值为根据的实时差分GPS(RTDGPS)技术,它是GPS测量技术发展的一个新突破,在公路工程中有广阔的应用前景。众所周知,无论静态定位,还是准动态定位等定位模式,由于数据处理滞后,所以无法实时解算出定位结果,而且也无法对观测数据进行检核,这就难以保证观测数据的质量,在实际工作中经常需要返工来重测由于粗差造成的不合格观测成果。解决这一问题的主要方法就是延长观测时间来保证测量数据的可靠性,这样一来就降低了GPS测量的工作效率。 实时动态定位(RTK)系统由基准站和流动站组成,建立无线数据通讯是实时动态测量的保证,其原理是取点位精度较高的首级控制点作为基准点,安置一台接收机作为参考站,对卫星进行连续观测,流动站上的接收机在接收卫星信号的同时,通过无线电传输设备接收基准站上的观测数据,随机计算机根据相对定位的原理实时计算显示出流动站的三维坐标和测量精度。这样用户就可以实时监测待测点的数据观测质量和基线解算结果的收敛情况,根据待测点的精度指标,确定观测时间,从而减少冗余观测,提高工作效率。 2 应用 实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS(地理信息系统)前端数据采集。 1 快速静态定位模式。要求GPS接收机在每一流动站上,静止的进行观测。在观测过程中,同时接收基准站和卫星的同步观测数据,实时解算整周未知数和用户站的三维坐标,如果解算结果的变化趋于稳定,且其精度已满足设计要求,便可以结束实时观测。一般应用在控制测量中,如控制网加密;若采用常规测量方法(如全站仪测量),受客观因素影响较大,在自然条件比较恶劣的地区实施比较困难,而采用RTK快速静态测量,可起到事半功倍的效果。单点定位只需要5-10min(随着技术的不断发展,定位时间还会缩短),不及静态测量所需时间的五分之一,在公路测量中可以代替全站仪完成导线测量等控制点加密工作。 2 动态定位测量前需要在一控制点上静止观测数分钟(有的仪器只需2~10s)进行初始化工作,之后流动站就可以按预定的采样间隔自动进行观测,并连同基准站的同步观测数据,实时确定采样点的空间位置。目前,其定位精度可以达到厘米级。 动态定位模式在公路勘测阶段有着广阔的应用前景,可以完成地形图测绘、中桩测量、横断面测量、纵断面地面线测量等工作。测量2~4S,精度就可以达到1~3cm,且整个测量过程不需通视,有着常规测量仪器(如全站仪)不可比拟的优点。 3 RTK技术的优点 1 实时动态显示经可靠性检验的厘米级精度的测量成果(包括高程)。 2 彻底摆脱了由于粗差造成的返工,提高了GPS作业效率。 3 作业效率高,每个放样点只需要停留1~2s,流动站小组作业,每小组(3~4人)可完成中线测量5~若用其进行地形测量,每小组每天可以完成8~5km3的地形图测绘,其精度和效率是常规测量所无法比拟的。 4 在中线放样的同时完成中桩抄平工作。 5 应用范围广—可以涵盖公路测量(包括平、纵、横),施工放样,监理,竣工测量,养护测量,GIS前端数据采集诸多方面。 6 如辅助相应的软件,RTK可与全站仪联合作业,充分发挥RTK与全站仪各自的优势。 4 推广建议 1 GPS静态定位技术和动态定位技术相结合的方法可以高效、高精度地完成公路平面控制测量。 2 生产过程中采用常规方法和GPS技术相结合生产流程可以极大地提高生产效率。 3 随着GPS技术特点是RTK技术的发展,各个厂家相继推出了具有自主专利技术的仪器,其初始化时间越来越短,跟踪能力也越来越强,精度越来越高,可靠性越来越强,有着良好的性价比,在勘察设计单位具有代替全站仪的趋势,单位设备更新时应考虑这一因素。 4 GPS技术在公路测量中的应用,是公路测量的一项革命性的技术革新,它将对传统的作业理念予以更新。 4、结语 GPS在公路勘测中的应用,对高等级公路的勘测手段和作业方法产生了革命性的变革,极大地提高了勘测精度和勘测效率,特别是实时动态(RTK)定位技术将在公路勘测、施工和后期养护、管理方面有着广阔的应用前景。 
(一)测量学的定义早期的定义:研究地球的形状和大小,确定地面点的坐标的学科。当前的定义:研究三维空间中各种物体的形状、大小、位置、方向和其分布的学科。测量学的内容包括测定和测设两个部分。测定是指使用测量仪器和工具,通过测量和计算,得到一系列测量数据,或把地球表面的地形缩绘成地形图。测设是指把图纸上规划设计好的建筑物、构筑物的位置在地面上标定出来,作为施工的依据。=========================================(二)大地测量学大地测量学:研究测定地球的形状和大小及地球的重力场的测量方法、分布情况及其应用的学科。=========================================(三)摄影测量学摄影测量学:研究利用航天、航空、地面的摄影和遥感信息,进行测量的方法和理论的学科。问答:地面控制测量分平面控制和高程控制两部分。(1)平面控制测量隧道工程平面控制测量的主要任务是测定各洞口控制点的平面位置,以便根据洞口控制点将设计方向导向地下,指引隧道开挖,并能按规定的精度进行贯通。因此,平面控制网中应包括隧道的洞口控制点。通常,平面控制测量有以下几种方法。①直接定线法对于长度较短的直线隧道,可以采用直接定线法。如图12-31所示,A、0两点是设计的直线隧道洞口点,直接定线法就是把直线隧道的中线方向在地面标定出来,即在地面测设出位于AD直线方向上的月、C两点,作为洞口点火、0向洞内弓1测中线方向时的定向点。在4点安置经纬仪,根据概略方位角。定出月'点。搬经纬仪到B'点,用正倒镜分中法延长直线到C'点。搬经纬仪至Cf点,同法再延长直线到0点的近旁0'点。在延长直线的同时,用经纬仪视距法或用测距仪测定义月"、月"C'和C"D"的长度,量出D'0的长度。计算C点的位移量。在CJ点垂直于CfD'方向量取C"C,定出C点。安置经纬仪于C点,用正倒镜分中法延长DC至月点,再从属点延长至A点。如果不与A点重合,则进行第二次趋近,直至月、C两点正确位于AD方向上。月、C两点即可作为在人、0点指明掘进方向的定向点,4、月、C、0的分段距离用测距仪测定,测距的相对误差不应大于1:5000。②导线测量法连接两隧道口布设一条导线或大致平行的两条导线,导线的转折角用U2级经纬仪观测,距离用光电测距仪测定,相对误差不大于1:10000。经洞口两点坐标的反算,可求得两点连线方向的距离和方位角,据此可以计算掘进方向。③三角网法 对于隧道较长、地形复杂的山岭地区,地面平面控制网一般布置成三角网形式,如图12-32所示。测定三角网的全部角度和若干条边长,或全部边长,使之成为边角网。三角网的点位精度比导线高,有利于控制隧道贯通的横向误么占友。④GPS法 用全球定位系统GPS技术作地面平面控制时,只需要布设洞口控制点和定向点且相互通视,以便施工定向之用。不同洞口之间的点不需要通视,与国家控制点或城市控制点之间的联测也不需要通视。因此,地面控制点的布设灵活方便,且定位精度目前已优于常规控制方法。(2)高程控制测量高程控制测量的任务是按规定的精度施测隧道洞口(包括隧道的进出口、竖井口、斜井口和平响口)附近水准点的高程,作为高程引测进洞的依据。高程控制通常采用三、四等水准测量的方法施测。水准测量应选择连接洞口最平坦和最短的线路,以期达到设站少、观测快、精度高的要求。每一洞口埋设的水准点应不少于两个,且以安置一次水准仪即可联测为宜。两端洞口之间的距离大于1km时,应在中间增设临时水准点。