xin_teng
生活中,有许多我们课本上学不到的数学知识,人们用一些公式来为它们定义:速度 时间=长度、长度时间=速度、长 宽=长方形面积 很多种。这不,我也发现了许多。早上起来时,我在衣柜里乱摸一气,最后穿了一只粉一只白的袜子。妈妈说: 我们放了一双粉的、一双白的、一双蓝的。你自己好好想一想,怎么拿最省力、最省时间。 我想得脑袋都大了,就是怎么也想不出来。妈妈发话了: 别呆在那儿,再想一想。 我脑海里闪过一丝灵光,双自己复算了一下,骄傲地大声回答: 摸四次!从最坏的角度去想,前三只都不一样,第四次一定会有颜色重复! 妈妈幽默了一下: 哟,我家的小傻蛋聪明了嘛!不过,幸运的人也会少抓几次的吧?下午,爸爸在马桶抽水箱里装了一个饮料瓶,然后走过来对我说: 宝贝,爸爸在抽水箱里放了一个瓶子,每次冲马桶可节省100毫升水。假定一个人一天冲三次,我们家三人一天要节省多少毫升水? 我列了一下式子:100 3 3=900毫升,爸爸看了,不吝惜自己的表扬,说: 真棒!那我们一个城镇大约十五万人,每天又能节约多少毫升水?合多少升水? 我略加思索一下,提笔写:15万=150000,150000 300=45000000(毫升),45000000毫升=45000(升)。爸爸点了点头,又问: 我国城镇人口大约4。5亿人,每天节约多少升水?又合多少吨? 我盘算了一会,又写了起来:4。5亿=45000万,4500015=3000,3000 45000=135000000(升)=135000(吨)。看不出来,一只小小的饮料瓶,一天竟可以省这么多水,那一年又该节约多少水啊?我又写下:135000 365=49275000(吨)。爸爸欣慰地笑了: 我家的宝贝女儿还不赖嘛!这么棒,今天允许你看一部电影。 好耶!爸爸万岁! 我欢呼雀跃。当然啦,我不仅开心的是又能看电影了,而是我的换算、列式计算的水平双提高了。原来生活中处处都存在数学,大家一起留心学习吧! 
巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是5千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答5+ 6:00 +6+4+4+3+2 ( ÷3等于17千克,这时三个背包的平均数,所以最终的肯定要超过17千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是5 千克10千克在这六个重量中,正好有6+46+4单5千克与其余的¥5中做的另一块都不可能得到5千克的重量最重的背包的证明,不可能是5千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中5千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?
把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=1〈@①,3/10=3〉@②;可能是8吗?不可能。 因为1/ 8=125〉@①,3/8=375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=111……=@①;3/9=1/3=1÷3=333……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=444…… @④=6/9=2/3 验证:2/3=2÷3=666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=12〈@⑤,13/100=13〈@⑥。可能是98吗?不可能。 因为12/98≈1224〉@⑤,13/98≈1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=121212……=@⑤; 13/99=13÷99=131313……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=151515…… @⑧=18/99=2/11,验算:2/11=2÷11=181818…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=312888…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法。 字库未存字注释: @①原字为1,1上加 @②原字为3,3上加 @③原字为4,4上加 @④原字为6,6上加 @⑤原字为12,12上加 @⑥原字为13,13上加 @⑦原字为15,15上加 @⑧原字为18,18上加
巧赢硬币记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。