期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    245

s15151787318
首页 > 期刊问答网 > 期刊问答 > 写论文用到的统计学方法概述是

4个回答 默认排序1
  • 默认排序
  • 按时间排序

2013116065

已采纳
感知机 二分类二分类的线性分类模型,也是判别模型。目的是求出把训练数据进行线性划分的分离超平面。感知机是神经网络和支持向量机的基础。学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。K近邻法 K-nearest neighbor, K-NN 多分类和回归是一种分类和回归方法,有监督学习。在训练数据集中找到和新的输入实例最接近的K个实例,这k个实例的多数类别就是这个新实例的类别。三要素:K的选择,距离度量,分类决策规则。实现方法:kd树(二叉树)快速搜索K个最近邻的点。K值选择:反映了对近似误差和估计误差的权衡。交叉验证选择最优的K值,K小,模型复杂,K大,模型简答。朴素贝叶斯法 多分类 用于NLP朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。首先学习输入输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。后验概率最大等价于0-1损失函数的期望风险最小化。是典型的生成学习方法,由训练数据求出联合概率分布,再求出条件概率分布(后验概率)。概率估计方法是:极大似然估计或者贝叶斯估计。基本假设是条件独立性决策树 decision tree 多分类,回归是一种分类和回归算法。包括三个步骤:特征选择,决策树生成和决策树的修剪,常用算法:ID3,C5,CART逻辑斯地回归和最大熵模型 多分类本质就是给线性回归添加了对数函数它的核心思想是,如果线性回归的结果输出是一个连续值,而值的范围是无法限定的,那我们有没有办法把这个结果值映射为可以帮助我们判断的结果呢。而如果输出结果是 (0,1) 的一个概率值,这个问题就很清楚了。我们在数学上找了一圈,还真就找着这样一个简单的函数了,就是很神奇的sigmoid函数(如下):逻辑回归用于二分类和多分类逻辑斯地分布是S型曲线最大熵模型:熵最大的模型是最好的模型。X服从均匀分布时候,熵最大最大熵模型的学习等价于约束最优化问题。对偶函数的极大化等价于最大熵模型的极大似然估计。模型学习的最优化算法有:改进的迭代尺度法IIS,梯度下降法,牛顿法,或者拟牛顿法支持向量机 二分类线性可分支持向量机利用间隔最大化求最优分离超平面。函数间隔

写论文用到的统计学方法概述是

181 评论(15)

xas2009

统计分析方法从根本上说有两大类,一是逻辑思维方法,二是数量关系分析方法逻辑思维方法是指辩证唯物主义认识论的方法。统计分析必须以马克思主义哲学作为世界观和方法论的指导。唯物辩证法对于事物的认识要从简单到复杂,从特殊到一般,从偶然到必然,从现象到本质。坚持辨证的观点、发展的观点,从事物的发展变化中观察问题,从事物的相互依存、相互制约中来分析问题,对统计分析具有重要的指导意义。数量关系分析方法是运用统计学中论述的方法对社会经济现象的数量表现,包括社会经济现象的规模、水平、速度、结构比例、事物之间的联系进行分析的方法。如对比分析法、平均和变异分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法等。
199 评论(14)

梦醒醉天涯

统计学的基本研究方法是大量观察法、统计分组法、综合指标法。1、大量观察法是指从社会现象的总体出发,对其全部单位或足够多数单位进行数量观察的统计方法。是指对研究事物的全部或足够数量进行观察的方法。社会现象或自然现象都受各种社会规律或自然规律相互交错作用的影响。2、统计分组法是按一定的标志将总体划分为若干部分的方法。是整理和分析统计资料的基本方法。其主要作用是: 区分社会经济现象的类型,研究现象的内部结构,揭示现象间的相互依存关系等。进行科学分组的关键是正确选择分组标志。分组标志是将总体划分为不同组别的标准或依据。3、综合指标法是指运用各种统计综合指标来反映社会经济现象总体的一般数量特征和数量关系的研究方法。对大量的原始资料进行整理汇总,计算各种综合指标,可以显示出现象在具体时间、地点条件下的总量规模、相对水平、平均水平和变异程度等。现象总体的综合指标概括地描述了总体各单位在数量方面的综合特征和变动趋势。拓展资料统计学是在数据分析的基础上,研究如何测定、收集、整理、归纳和分析反映数据数据,以便给出正确消息的科学。这一门学科自17世纪中叶产生并逐步发展起来,它广泛地应用在各门学科,从自然科学、社会科学到人文学科,甚至被用于工商业及政府的情报决策。随着大数据(Big Data)时代来临,统计的面貌也逐渐改变,与信息、计算等领域密切结合,是数据科学(Data Science)中的重要主轴之一。譬如自一组数据中,可以摘要并且描述这份数据的集中和离散情形,这个用法称作为描述统计学。另外,观察者以数据的形态,创建出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。这两种用法都可以被称作为应用统计学。数理统计学则是讨论背后的理论基础的学科。
126 评论(12)

lxd161

选ABC。A、大量观察法这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。B、统计分组法由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位。C、综合指标法统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。D、数理模型分析(Mathematical Model Analysis)或称数理分析(Mathematical Analysis) 数理模型分析方法是指在经济分析过程中, 运用数学符号和数字算式的推导来研究和表示 经济 过程和现象的研究 方法。拓展资料:统计学的基本研究方法一、大量观察法二、统计分组法三、综合指标法四、统计模型法在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。五、统计推断法在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。统计学是通过搜索、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。起源统计学的英文statistics最早源于现代拉丁文statisticum collegium(国会)以及意大利文statista(国民或政治家)。德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。在十九世纪统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
326 评论(12)

相关问答