期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    183

870373006
首页 > 期刊问答网 > 期刊问答 > 研究生论文数据分析软件有哪些

5个回答 默认排序1
  • 默认排序
  • 按时间排序

hyong319

已采纳
论文写作的9款实用工具:1、fritzingfritzing这个软件相比与Altium designer和allegro,fritzing多了一个原理图模式,能够很美观的展示电路板的电气连接,能够用于画一些简单器件的电路连接,显示效果极好。2、mathpix snipping Tool这是一款开源的公式OCR软件,能够识别公式转换成为Latex语法,直接输入在MathType公式编辑器中。这款软件需要和mathtype一起使用,体验感更好,直接将第二行的Latax语句复制到Mathtype中即可完成转换。3、MathTypeMathType是一款著名的公式编辑器软件,编辑的公式能够在Word中直接修改,是理工科学生必备软件。4、MatlabMatlab是工科生应该都知道的一款软件,应该也有一些同学的毕业设计就是和Matlab相关,强大的图像处理与仿真功能,使得Matlab成为理工科学生的必备软件。5、Originlab这是一款专业的数据分析软件,与matlab一样,功能也非常的强大,各大网站站上都有相关的教程学习,很多SCI论文的数据可视化插图都是使用这款软件画制出来的。6、visiovisio是微软旗下的产品,因此与Word的兼容性好,visio经常被用来画一些框图,也是论文写作的必备软件。

研究生论文数据分析软件有哪些

200 评论(9)

党党啦啦啦

EXCEL:最常见的数据分析软件,会的人比较多,功能也比较齐全,操作比较简单,可以分析,可以制图(图表类型也不少)等等,不过一旦数据量大了,EXCEL比较卡,确实有点浪费时间。SPSS:可以分析数据,可以做一些数据模型,但需要企业人员有一定的数据和统计基础,上手相对难些,用好了很不错。BDP个人版:有数据接入、数据处理、可视化分析等功能,操作简单,功能也比较齐全,数据图表效果也很好,主要数据可以实时更新,节省了很多重复分析的工作。不过BDP免费版接入的数据容量有限,这也是一个问题,除非要花费买容量咯。可以根据这些特点,选择适合企业的~
97 评论(8)

seagrove

除了EXCEL 数据分析用的多的有以下几个软件,你看看你们公司符合哪个SPSS(StatisticalProduct and Service Solutions),“统计产品与服务解决方案”软件,是数据定量分析的工具,适用于社会科学(如经济分析,市场调研分析)和自然科学等林林总总的统计分析,国内使用的最多,领域也多。SPSS就如一个傻瓜相机,界面友好,使用简单,但是功能强大,可以编程,能解决绝大部分统计学问题,适合初学者。它有一个可以点击的交互界面,能够使用下拉菜单来选择所需要执行的命令。它也有一个通过拷贝和粘贴的方法来学习其“句法”语言,但是这些句法通常非常复杂而且不是很直观。SPSS致力于简便易行(其口号是“真正统计,确实简单”),并且取得了成功。但是如果你是高级用户,随着时间推移你会对它丧失兴趣。SPSS是制图方面的强手,由于缺少稳健和调查的方法,处理前沿的统计过程是其弱项。SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖。SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也正是基于此,它是最难掌握的软件之一,多用于企业工作之中。SAS就如一台单反相机,你需要编写SAS程序来处理数据,进行分析。如果在一个程序中出现一个错误,找到并改正这个错误将是困难的。在所有的统计软件中,SAS有最强大的绘图工具,由SAS/Graph模块提供。然而,SAS/Graph模块的学习也是非常专业而复杂,图形的制作主要使用程序语言。SAS适合高级用户使用。它的学习过程是艰苦的,正所谓“五年入门,十年精通”,最初的阶段会使人灰心丧气。然而它还是以强大的数据管理和同时处理大批数据文件的功能,得到高级用户的青睐。R 是用于统计分析、绘图的语言和操作环境,属于GUN系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具,多用于论文,科研领域。R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。因此R有很多最新的模型和检验方法,但是非常难自学,对英语的要求很高。R与SAS的区别在于,R是开放免费的,处理更灵活,同时对编程要求较高。
263 评论(14)

hanmingyi

我也是传播学研究生毕业的。主要还是看你要拿来做什么用吧。我经常用的一个在线数据分析平台叫BlueMC
126 评论(8)

闷头苦干

虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。PythonPython,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。R软件R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。SPSSSPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。Excel 可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。SAS软件SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。
307 评论(14)

相关问答