zyj123tank
人工智能助力辅助诊断事实上,国外早已有科学家和医生正在利用人工智能来从海量数据,比如电子健康记录、影像诊断、处方、基因组分析、保险记录甚至是可穿戴设备所产生的数据中来提取有用信息,来为特定的一类人群而不是特定疾病来制定合理的卫生保健计划。最为知名的当属IBM的“Waston”医生。人的大脑的记忆容量和时间是有限的,难以记住并理解日新月异的医学研究论文和上万种疾病。但人工智能不同,它可以通过深度学习技术,可以不间断从大量医学书籍、电子病历等完善自己。然后通过认知分析技术,凭借从各种渠道搜集的海量数据,迅速给出“意见”,指导医生做出诊断和治疗决策,并且不会因为人的各情绪导致缺诊或误诊,同时患者能够更快速地获得医疗服务,而医疗机构也可节省成本。对于医生来说,通过人工智能可以辅助诊断,减少筛选对比病例的时间,为患者制定准确的治疗方案;对于患者来说,可以更快速的完成健康检查,获得更为精准的诊断建议,节省大量的时间、金钱成本;对于医疗来讲,深度学习可以提高准备效率,同进系统性降低医疗成本。基因分析和精准医疗当然,人工智能不仅仅只在辅助诊疗方面发光发热,它在基因分析和精准医疗方面更能展现自己的优势。精准医疗要想实现精准一定是建立在数据之上的,主要的是基因数据。对于很多疾病,尤其是罕见病来说,找到基因上微小的变化就很可能找到了解决问题的钥匙,但这同样也意味着巨大的计算量。在没有深度学习之前,这几乎是不可想象的,但随着深度学习的出现,像IBM Waston、Google大脑、百度大脑这些应用深度学习的计算处理系统,他们能够不断的通过已有数据进行训练,在“黑盒”中得出规则,并完成一些罕见病的早发现、早诊断。人工智能的计算能力还有效地推动更多精准治疗新药的出现,让我们攻克现有的一些疑难杂症,比如癌症、艾滋病等一些当前医疗水平较难处理的疾病。在美国像AtomWise、Flatiron Health等公司已经在尝试这方面的创新。人工智能仍然代替不了医生虽然人工智能在医学领域的应用越来越广泛,但人工智能终究不能代替医生。人工智能这项技术,其最大的作用在于整合海量的信息,从之筛选出有价值的数据,是作为医生诊断的辅助。而到真正的治疗阶段,则更多需要医生对患者面对面的沟通、交流,来确定合适的治疗方案。而患者也更需要医生亲切的关怀,是有血有肉的交流方式,而不是机器冷冰冰的问答。 
网页链接在制药公司中使用人工智能(AI)可以帮助提供更好的诊断,开发更高质量的药物以及改善患者的医疗程序。制药行业是医疗保健行业不可或缺的一部分。但是,该行业的增长在最近几年中有所放缓。许多行业专家认为,制药市场已经达到饱和阶段。但是,技术的创新任然给该领域带来了更多的希望。
精准医学是组学大数据跟临床医学的结合 精准医学有可能改变医疗健康的基本概念精准医学我觉得至少要具备两个条件,第一个,要具备组学大数据的基础,我们知道,精准医学就是把组大数据用到临床当中来,所以第一个你要获取组学大数据,那么也就是获取基因组,蛋白组、转入组、代谢组等等这些组学数据,这些数据本身是没有用的, 第二步就是组学数据的挖掘,挖掘的话就会用到大数据分析的理论方法,包括刚才张钹院士讲的人工智能的方法,深度学习的方法等等,以知识为基础的方法用来挖掘这些组学,以获得在分子水平上跟疾病相关的知识。中科智谷联手复旦大学,正在建立智慧医疗中心,为精准医学领域做出贡献。