期刊问答网 论文发表 期刊发表 期刊问答

关于数学的论文3000字怎么写

  • 回答数

    2

  • 浏览数

    184

曦兮思宇
首页 > 期刊问答网 > 期刊问答 > 关于数学的论文3000字怎么写

2个回答 默认排序1
  • 默认排序
  • 按时间排序

houlizhou

已采纳
数学实验在数学教与学中的作用 摘要:数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果 谈到做实验,一定容易联想到物理实验、化学实验、生物实验等等;谈到学数学,自然会联想到做数学题,题海战术几乎成为数学学科的代名词。难道数学也可以做实验?“数学实验”是为了探索数学知识、检验数学结论(或假设)而进行的某种操作或思维活动。 数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果这是新课标所倡导的数学素养和数学的人文价值所在! “数学实验”对学生数学学习的影响 数学实验,是学生通过观察、操作、试验等实践活动来进行数学九月开学季,老师你们准备好了吗?幼教开学准备小学教师教案小学教师工作计初中教师教案初中教师工作计学习的一种形式。抽象的道理很重要,但要用一切办法使它们能看得见摸得着做数学式样这种学习方式,不是学生被动接受课本上的或老师叙述的现成结论,而是学生从自己的“数学现实”出发,通过自己动手、动脑,用观察、模仿、实验、猜想等手段获得经验,逐步建构并发展自己的数学认知结构的活动过程。我在近几年的数学教学实践中,亲身体会到动手实验在小学数学教学中有不容忽视的作用。 一、动手实验可以培养学生学习数学的兴趣 动手实验教学符合小学生的年龄和思维特点,它是一种特殊形式的“玩”。通过这种学习方式来培养学生学数学的兴趣,是符合学生认知规律的。动手实验的过程又是学生动手实践、互相合作、探索交流的过程,因而它不仅培养了学生的兴趣也培养了学生的独立思考意识和小组合作的意识。如在学习轴对称图形一课时,我让学生准备了蜻蜓、蝴蝶、树叶等。首先引导学生观察、分析、小组讨论,然后通过提问、动手制作,最后得出结论。整个教学过程都贯穿着动手实验、小组合作,这既激发了学生的学习兴趣,又提高了课堂教学的效率,使学生在动手实验中感受到了学习的乐趣。在乐趣中撷取了知识,使学习变得自然、轻松、高效,从而达到了教学目的。 二、动手实验可以加强学生对数学概念的理解 数学是一门抽象的学科。学生学习数学,感觉往往是单调乏味的,特别是对概念的理解。心理学研究表明,学生认识规律是“感知——表象——概念”,而动手实验符合这一规律,能变学生被动地听为主动地学,充分调动学生的各种感官参与教学活动,去感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。使得抽象的概念变得具体形象,在学生头脑中形成活的印象,从而达到预期的教学效果。 三、动手实验有助于学生理解数学算理 数学是研究客观世界数量关系和空间形式的科学。数量关系和空间形式在数学中相互渗透、互相转化。数学家华罗庚指出,数缺形时少直观,形缺数时难入微。这就要求在研究数学问题时,把数形知识结合起来,引导学生从数的方面用分析的方法进行抽象思维,从形的方面进行形象思维。通过动手实验,可促进这一过程的完成。在实验操作中从形的方面进行具体思考后逐步过渡到数的方面进行思维,这样不仅可以帮助学生较为深刻地理解算理,同时促进了学生形象思维和逻辑思维的协调发展。 四、 动手实验有助于学生解决实际问题 知识经济的主要特征是知识的创新和应用。所以,要适应时代的要求,就要培养学生对所学知识的应用能力。学数学教学应充分利用学生动手实验来培养学生运用数学知识解决实际问题的意识和能力。 五、动手实验可以培养学生的逻辑思维能力 动手实验教学从学生已有的认知水平出发,抓住知识间的内在联系,培养了学生的逻辑思维能力。学生逻辑思维能力的培养要以动手实验为基础,才能使学生感受到其中的乐趣,从而收到意想不到的教学收获。 六、动手实验可以培养学生的创新能力 新课程倡导培养学生的创新能力,而动手实验教学是培养学生创新能力的必要途径,是数学教学中不可缺少的重要环节。表面上看,动手实验浪费了师生大量的时间,但它更有突出之处,使学生不仅善于提出问题、分析问题,还会培养学生敢于主动探究和创新的能力。 动手实验教学是“以学习者为中心,以活动为主,平等参与”的素质教育模式。它打破了以往知识的直接呈现,融知识于活动之中。在平等参与的前提下,通过亲手操作,亲身体验来理解、验证数学原理。这比起那些单纯的让学生死记硬背的传统教学模式而言,更加体现了素质教育的艺术美,体现了素质教育的活力。 因此,动手实验教学是一种非常有效并切实可行的教学模式。奋战在第一线的数学教师,有必要充分认识到动手实验在数学教学中的重要作用,让我们运用动手实验这种有力的教学手段来打造出更多适应社会需要的高素质的栋梁之才。

关于数学的论文3000字怎么写

322 评论(10)

liao云

《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。
352 评论(9)

相关问答