期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    352

T9ing
首页 > 期刊问答网 > 期刊问答 > 有关数形结合数学思想的论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

惯性转身

已采纳
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:   一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。   二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。   三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。   四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。   五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。   六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。   七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。    八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。  数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。    所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。    纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。    数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野   5、数形结合思想的论文 数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。   (1)、以“数”化“形”   由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题。我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构。这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系。因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。   (2)、以“形”变“数”   虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂 的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。   解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等。   (3)、“形”“数”互变   “形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。一般方法是看“形”思“数”、见“数”想“形”。实质就是以“数”化“形”、以“形”变“数”的结合。   数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。要想提高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。

有关数形结合数学思想的论文

245 评论(13)

lsjun0125

数 形 结 合  江苏省阜宁中学 黄爱华 224400  数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。  数形结合思想方法是近些年来高考重点考查的思想方法之一,每年的高考试题(特别是客观题)能够用此方法解决者均占相当的比例。其特点是形象、直观、快捷,因此是高考备考中应予重视的重要数学解题方法。  例1 (1995年全国理)已知I为全集,集合M、NI,若M∩N=N,则( )  A、 B、M C、 D、  分析:集合M、N比较抽象,欲具体考察其关系有困难,若能借助集合的图示(文氏图),就能化抽象为具体,故可作出文氏图加以解决。  可作出文氏图加以解决:  解:用文氏图来表示M、N(如图1),显然CIMCIN ,故选C  评注:对于抽象集合问题,只须按题设作出文氏图即可解决。  例2、(2003年新课程理)  设函数f(x)=,若f(x)>1,则x0的取值范围是  A(-1,1) B(-1,+∞) C(-∞,-2)∪ (0,+∞) D(-∞,-1)∪ (1,+∞)  分析:常规思路:分段函数进行分段处理,因为f(x0)>1,当x0≤0时,2-x0-1>1,2-x0>2,∴x0<-1;当x0>0时,∴x0>1  综上,x0的取值范围是(-∞,-1)∪(1,+∞)  本题若作出函数图象,就能回避分类讨论。  解:首先画出函数y=f(x)与y=1的图象(图2),结合图象,关注选项特征,易得f(x)>1时,所对应的x的取值范围,选D。  评注:对于与分段函数相联系的相关问题(如不等式,最值),均可借助图象法优化解题,另外,对于一些简单不等式,特别是解无理不等式,抽象不等式,均可考虑数形结合法,请看例3 。  例3、(1)已知奇函数f(x)的定义域为{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是_________。  (2)解不等式>x+1  分析(1):函数f(x)比较抽象,欲化归为具体目标不等式困难,注意到x·f(x)<0表明自变量与函数值异号,故可作出函数f(x)的图象加以解决。  解:作出符合条件的一个函数图象(示意图)如图3,观察图象易知,满足x·f(x)<0的x的取值范围是(-1,0)∪(0,1)。  分析(2):令y1=的图象为C1,y2=x+1的图象为C2,则解不等式就归结为寻求C1在C2上方时x的取值范围。  解:在同一坐标系内分别作出y1=和y2=x+1的图象(图4),由=x+1解得A(2,3),观察图象易得原不等式的解集{x|- ≤x<2}。  例4、(2004年上海)若函数f(x)=a|x-b|+2在[0,+∞)上为增函数, 则实数a,b的取值范围是______。  分析:①当a>0时,需x-b恒为非负数,满足题意,即a>0,b≤0。  ②当a<0时,x-b恒为非正数,又∵x∈(+∞),∴不成立。  综合①②知a>0且b≤0。  这是给出的参考答案,本题若能从函数f(x)的图象考虑,不难迅速确定答案。  解:先作出函数f(x)的图象,由图象变换理论,只须将O(0,0)移至O'(b,0),在新系下,只须作出y=a|x|+2图象,若b>0,结合图象知,f(x)在[0,+∞)不单调。  ∴b≤0,此时要使f(x)在[0,+∞)递增,结合图象分析得a>0。  评注:图象法是解决函数单调性问题的最基本方法。  例5、(2004年上海)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)  (1)求函数f(x)的表达式。  (2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。  分析:由(1) ∴方程f(x)=f(a)即为,若去分母则得到关于x的三次方程,从“数”上处理较难,若能从“形”上考虑,“数形结合”问题可找到解决的方案。  解(2):由f(x)=f(a)得,在同一坐标系内作出f2(x)=和f3(x)=+的大致图象(图5),易知f2(x)与f3(x)在第三象限只有一个交点,即f(x)=f(a)有一个负数解。又f2(2)=4,f3(2)=+-4  当a>3时,  ∴当a>3时,在第 一象限f3(x)的图象上存在  点(2,f3 (2))在f2(x)图象的上方。  ∴f2(x)与f3(x)在第一象限有两个交点,即f(x)=f(a)有两个正数解。  因此,方程f(x)=f(a),有三个实数解。  评注:关于方程根的个数问题,使用数形结合处理比较方便、直观。  综上,从内容上讲,可以用数形结合思想方法解决的问题,主要有以下几类:  (1)集合的图示;  (2)与函数性质有关的问题;  (3)与方程、不等式有关的问题;  (4)最值问题;  (5)与解析几何有关的问题。  在使用数形结合方法时,要注意以下两点:  (1)数形结合常用来解选择题,填空题,属简缩思维模式,若用来处理解答题,要特别注意说理的严密性,如例5中两函数在第 一象限的交点的说明。  (2)在数形结合时,要注意对函数的优化选择,达到简洁、容易的目的,如将函数转化为=+处理。
185 评论(14)

lbjbiexiao8

数形结合思想是中学数学中四种重要的数学思想方法之一,所谓数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和几何形式巧妙、和谐的结合起来,并充分利用这种“结合”,寻求解题思路,使问题得以解决数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,它从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性和灵活性的有机结合
330 评论(12)

相关问答