期刊问答网 论文发表 期刊发表 期刊问答

数形结合思想在小学数学中的应用论文

  • 回答数

    2

  • 浏览数

    227

靠近我啦
首页 > 期刊问答网 > 期刊问答 > 数形结合思想在小学数学中的应用论文

2个回答 默认排序1
  • 默认排序
  • 按时间排序

不将就梦魇

已采纳
1转化思想在小学数学教学中,转化思想是一种常见的数学运用方法,其主要功能是将不同类型的元素转化为相同类型的元素。转化思想的运用能够将数学题型化繁为简、化难为易,使学生快速解答题型。在小学数学中,转化思想被经常应用,如:异分母加减法。14+23,教师应引入转化思想,教育学生异分母转化法,将数学题转化为同分母加减法:312+812,使答案一目了然。除此外,分数与小数的加减法也需要渗透转化思想,如:0.5+14就可转化为0.5+25,使问题更加容易解决,提高学生问题解答能力。2.分类思想分类思想主要是将某问题视为整体,并在一定分类标准上将整体划分为相应部分,以此达到快速解答问题的目的。如:在小学几何教学中的三角形教学中,将所有三角形分为锐角三角形、直角三角形与钝角三角形,此三类三角形直接囊括了所有三角形的特征。分类方法是小学数学中的重要数学思想方法,为确保分类方法的合理性,教学应教育学生在采用此方法解题时遵循以下几项原则:统一性原则、不重复与遗漏原则、层次性原则等。3数形结合数形结合是将抽象的知识转化为直观概念,提高学生理解能力,实现解决问题的目标。小学思维正处于过度其,形象思维较强而逻辑思维较差,数形结合能够巧妙引导学生结合形象思维与抽象逻辑,提高学生的思维能力。如分数的算式14×15可借用图形达到结果直观的目的。将矩形分为数个1×1cm的格子,并用/表示整个矩形的14,用/表示整个矩形的15,可直观看出两者间的公共部分,即为两者之积。

数形结合思想在小学数学中的应用论文

333 评论(8)

森297

渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念建构主义认为学生学习活动的本质是:学习并非对于教师所授予的知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构过程。数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
289 评论(8)

相关问答