xiaolin0324
要提供宽松学习氛围宽松、民主、和谐的学习气氛能消除学生恐惧的心理障碍。学生只有在轻松愉快、毫无顾忌、毫无压力的情感氛围下才能对所学的知识、所研究的问题产生浓厚的兴趣,才能积极主动地参与到“探究、尝试、发现、创新”的学习过程中,才能在有自己的想法和见解时敢说敢做。要建立一种新型和谐的师生关系 这种关系体现在教师要参与学生的活动,了解、指导学生的探索研究,经常用商量的语气与学生交流,如“谁想说”“谁愿意说”“我很荣幸,我和某某同学想到一块了”等。要尊重、理解、信任、热爱每一名学生,形成师生间的思想交流、情感沟通的关系。师生关系融洽与否,主要取决于教师。教师应把自己和学生的关系定位于朋友的关系,用尊重、相信、平等、友好的情感去感染学生,使课堂充满“爱”的气氛,使师生感情融洽。教师应充分利用时间和学生交流,让学生敢于当着老师的面说出自己的生活和学习情况,在课堂上能大胆地充分发表自己对教学的意见和想法,尽量用自己的想法和自己的方法去解决数学问题。采取小组合作学习的方法,促进学生之间的合作和交流 把优、中、学困的学生按“一二一”或“二二二”的比例进行异质合理搭配,组成学习小组进行合作学习,让不同层次的学生交流个人想法,一起质疑探究,同时及时反馈纠错,再把小组不能解决的问题在全班进行交流,并在教师的启发指导下加以解决。要鼓励学生敢于说“不”在数学教学中,教师应当适当“创造”机会,鼓励学生发现老师授课时的“错误”,用非常简单的理由指出老师的“错误”,进而发展到让学生即使在对自己的想法尚不确定时,也敢于说出来,再由同学们来判断是否正确,从而进一步加深对知识的理解和掌握。例如,教学两步计算应用题,“植树小组每人每天种8棵树,照这样计算,5人4天一共种多少棵树?”(用两种方法解答)所用方法是:第一种,先求出5人1天种多少棵,再求5人4天种多少棵;第二种,先求出每个人4天种多少棵,再求5人4天种多少棵。教师故意在教学过程中强调用两种方法解决,等教学完所用方法后,提问学生:学完这道题,你们还有什么疑问吗?这时学生就会提出问题:是否只有这两种方法呢?教师就可以引导学生讨论是否还有其他方法。经过讨论后得出结论。要创设各种创新机会创设情境,激发创新意识。教学要激发学生的创新意识,首先要能调动学生的学习主动性。教师可在教学中创造一定的情境,使学生处于一种主动、好奇、活泼的能动状态。例如,教学加减法的简便运算(连减,把两个减数合并为一个减数的简便运算),教师可创设这样一个情境:全班同学手上都有100元,去商店买东西。商店的规则是:售货员每次同时卖两种物品,哪个同学先算出他用100元买两种物品后所剩的钱,那两种物品就卖给他。售货员出示物品的价格为:(1)16元和34元;(2)53元和27元;(3)29元和31元;(4)15元和75元;(5)28元和42元。学生在此情境中,自然而然地产生创新意识,使计算变得简便。动手操作,培养创新能力。在教学活动中,教师应尽量让学生参与整个学习过程,给他们动手操作的机会,让他们在学习活动中边思维、边创造,在活动中获取知识,发展智力,提高能力。例如,教学平行四边形和梯形的特征时,教师可以把平行四边形和梯形合起来教。上课前,教师发给学生几组大小、形状各异的图形:普通的四边形、长方形、正方形、平行四边形、梯形各两个,要求学生对这些图形进行比一比、量一量,然后分类,说说哪几类已经学过,哪几类没有学过。教师说明没有学过的是平行四边形和梯形,再要求学生动手量一量,比一比,找出平行四边形和梯形的特征。最后,要求就这几类图形说说它们之间有什么关系,画图表示它们的关系。总之,我们要遵循学生学习数学的心理规律,关注学生的情感态度,把学生作为主动的求知者,让他们用创新的精神去主动学习,主动探求,主动合作,主动应用,并在获取知识的同时提高学习能力和创新能力。 
六年级数学小论文(第一篇) 在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧六年级数学小论文(第二篇养螃蟹的数学)【提出问题】:我们的家乡高淳县因为螃蟹而闻名全国,我家也是养螃蟹的。我喜欢我家的螃蟹,它们小的时候很可爱,爬在手上痒痒的。养螃蟹很辛苦,需要很高的成本,但收益也不错,也许这就是“苦中有乐”吧!我们一家的生活就指望爸爸的蟹塘了,为了弄清楚今年我家蟹塘的利润,我决定做一次调查。【调查结果】:要知道我家今年的成本和收入各是多少,那么就要先了解拿了多少蟹苗。对于这个问题,我还是要问我无所不知的老爸。晚上,爸爸回来后,我连忙跑去问:“爸爸,咱们家今年拿了多少蟹苗呀?”爸爸不解的问:“你问这些干什么呀?”于是,我便把前因后果跟他讲了一下。老爸终于明白了我的意思。他对我说:“我们家一共拿了20000元的蟹苗。”接着又对我说了许多关于螃蟹的知识。晚上问了一些问题后,我把它们用一张纸记录下来,大概是以下这个样子:挖土机清塘10000元田亩费18000元蟹苗20000元玉米3000元小麦4000元螺蛳20000元小鱼70000元成本:总计:145000元现在已经知道成本是多少钱了,前面提到说要计算成本、收入各是多少,所以我还是要再问一下老爸。爸爸说:“目前大约有3000多只螃蟹上岸了,占总数的四分之一,每斤平均可以卖到50元左右。”除了螃蟹可以卖钱,龙虾和鱼也可以卖钱,如果鱼按4元一斤,龙虾按7元一斤,我们家还是可以多赚一些钱。【推算结果】:计算成本已经算好了,是145000元,下面只要算收入了。如果按照每只螃蟹35斤,每斤50元来算,那么就可以得到下面的算式:3000×4 = 12000(只)12000×35 = 4200(斤)4200 × 50 = 210000(元)210000 – 145000 = 65000(元)4×600 = 2400(元)7×2000 = 14000(元)65000 + 2400 + 14000 = 81400(元)除去成本的话,我家大约可以赚81400元。【对推算结果的反思】:结果出来了,我无比兴奋,因为这是我忙活了很多时间的成果。我对爸爸说:“没想到赚钱也这么辛苦呀!”我一开始以为养螃蟹不用成本呢!爸爸笑着说:“处处有数学呀,没想到养螃蟹中也有数学!”这时,我考虑了一个问题:这些钱都花到哪儿去了呀?接着我想了想,明白了这些钱是家里用来买生活用品和衣服粮食的钱,我笑我自己太笨了。
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以8,也就是35*8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*8=28(元),40*8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈045,32/650≈0。049,049>045,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。