期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    297

360已被注册
首页 > 期刊问答网 > 期刊问答 > 教育信息技术类论文范文初中数学版

2个回答 默认排序1
  • 默认排序
  • 按时间排序

amh2013

已采纳
《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。

教育信息技术类论文范文初中数学版

312 评论(13)

liulixin0711

初中数学电教论文1:多媒体技术在初中数学中的应用 创新是知识经济时代的一个显著标志,二十一世纪的人才必须具有开拓进取精神,必须具有创新意识和创新才能,而知识创新的基础是教育,教育要创新就要转变教育观念,大力推进素质教育。 信息时代,以多媒体、计算机和网络通讯技术为主要标志的信息技术的迅猛发展,学习教学的环境和手段正在发生着新的变化,传统的教学目标、教学设计、教学模式和教学方法已经严重不适应信息时代对人才培养的要求。在学生完成一件作品的过程中,都需要开动脑筋,大胆想象,自己动手。”新的《数学课程标准》也把“现代信息技术作为学生学习数学和解决数学问题的强有力工具”。 针对多媒体技术在日常数学教学中的应用,结合我自身的体会谈一些粗浅的认识。 一、多媒体应用可提高学生的空间想象能力 数学教学的主要目标之一就是培养学生的空间能力。多媒体能用具体形象的媒体展示给学生,使其能从中体验形象与抽象的关系。在课件《立体图形的展开图》的制作中,我适当地运用动画、声音来对学生的学习氛围进行调节,在上课前通过媒体播放一首CD的音乐,让学生在专心致志地欣赏中达到情感智商的提高,有利于学生数学思维的发展。在讲立体图形时,我设计插入一段动画影片《旋转着的地球》,时间是半分钟,在同学观看时,结合教师课题讲解,让学生进一步复习生活中的立体图形。在制作各张幻灯片画面时,注意用意明确,使常规数学教学中要求的基本技能、重要的思想方法、运算能力和分析问题解决问题的能力尽量反映在课件中,各个幻灯片的连接注意衔接合理、自然,利用人工操作控制时间,使其变化有序,让学生对多媒体在教学应用中避免产生黑板搬家的感觉,尽量使得求解以及归纳总结等与常规教学的方法相接近,使学生比较自如、顺畅地进入数学的学习状态。 二、多媒体应用可提高学生的发散性思维能力 在对学生发散性思维能力的培养方面,针对把一个用橡皮泥做的正方体,用一刀切去一部分,那么剩下部分切口图形为哪些形状制作了多个正方体。然后用FLASH制作动画,一一把剪切的形象演示出来,剪切的角度由小而大变化,给学生以形象直观的了解,开发他们的发散性思维。如在处理教科书中数据的表示时,首先用EXCEL制作了统计表,接着利用EXCEL的强大功能在把它转化为条形统计图,折线统计图,扇形图型等表达方式,使学生能在实践生活中体验数据的存在,数据的快速处理,对开阔学生视野,体现发散思维的流畅性、变通性有较大的帮助。 三、多媒体应用可提高学生学习数学的兴趣 数学课程的特点之一是内容抽象。因此,考虑如何在传授知识的过程中做到生动形象,是数学教师在教学实践中时常思索的问题。而多媒体在数学教学中应用可以较好地解决这个难题。例如在图形的平移和旋转中,学生对图形的特征虽然了解,但应用上把握不定。我在设计课件这一部分时,采用动画显示图形的平移和旋转,例如,可以使三角形自左飞入,然后按动画叠放次序播放,将所要平移的三角形的自动地缓缓沿着移动的方向移动,让学生能够体会到平行移动由移动的方向和距离决定,加深了对平移的特征的掌握。 四、 多媒体可应用于数学教学中实验模拟和难点突破 学生在中学阶段对数学的理解有两大难点:立体几何部分与概率统计部分。以往教师对这二部分知识较难做到实验模拟。我们在选择相关软件的基础上,设计有关课件用于计算机模拟实验,可多次出现,帮助学生复习掌握。对立体几何的理解我借用高中的立体几何画板中的范例,使各类几何体能在静态和动态的状况下展现给学生,既激发学生兴趣,同时也大大加快理解速度。对概率统计我选择各种相关的EXCEL等软件,重复多次实验,对各种数据进行分析统计。 总之,在信息时代的课堂教学中,应该充分利用多媒体和网络创造的丰富资源的优势,引导和促进学生将传统的学习模式和现代的学习模式结合起来,不断促进和提高学生学习的自主性、合作性和创造性,用先进的教学技术造就优秀的新世纪人才。随着计算机的日益普及,多媒体技术的不断发展,以及互联网使用的迅速增长,这对我们每一位教师来说是一种机遇,更是一种挑战,只有以一种健康、充满激情的开放心态,迎接信息时代的挑战,才能跟上时代潮流,为我国的教育事业腾飞作出应有的贡献! 初中数学电教论文1:浅谈电教媒体在初中数学导探教学中培养学生创新的功用 创新源自于探索,探索更是创新的过程。以引导学生自我探索为目的的初中数学导探教学模式,我们已经过两轮从初一到初三的实验。通过实验表明,恰当、巧妙地利用音乐、幻灯、录音、录像、计算机等电教手段,使形、情、境、理熔于一炉,把教师的“导”与学生的“探”有机地结合起来,和谐地进行教学,会有效地开启学生思维的闸门,激发联想,激励探索,不断培养学生的创新精神。 一、 运用电教媒体,激发学生探索兴趣 根据初中学生心理特征和思维发展的不平衡性,将数学课本中一些抽象的概念、复杂的变化过程、形态各异的运动,通过多媒体对课本、图形、图像、动态和声音等进行综合处理与控制,直接展现在学生面前,调动了学生的眼、耳、脑等器官,让他们兴奋起来,创造了一个使学生积极参与、乐于探索的情境。所以,在教学软件制作过程中我们注重利用图形、音乐和动画等多种信息来补充刺激学生的多种器官,使教学内容真实化、趣味化和多样化,有力地唤起学生的注意,调动起学生学习的积极性和学习兴趣。例如:在“直线和圆的位置关系”教学中,我们设计了如图1的教学软件,屏幕出现了:美丽清晰的地平线上,太阳开始露出了可爱的笑脸。将这一美丽的景物形象地比喻为直线和圆的关系。 在舒缓、优美的《日光曲》音乐的伴奏下,一首“一轮红日,从地平线上冉冉升起……”的散文诗轻轻诵来……组合成一个巨大的、诱人的“探索场”,在教师的引导下,学生很快“悟”图出直线和圆的位置关系在公共点个数方面存在的本质特征,教师提示学生去发现:直线和圆有几个公共点?位置关系可分为几种类型?分类的标准是什么?能否象判定点和圆的位置关系那样,通过数量关系来判定直线和圆的位置关系?这样,使学生学会运用联想,化归、数形结合的思想方法去探索问题实质,并且这样探索的兴趣也会持续下去。另外,在“直线与平面垂直”采用了“日晷”实例录像图片并配上音乐,在“轨迹”教学中运用软件的动态性、再现性等进行了教学。实验发现,学生在电教媒体的作用下,产生强烈的探奇觅胜的心理。因此,教师在多媒体的设计和使用时就必须根据学生的身心特点和教学要求,设置问题情境,并注意“五度”(程度、难度、跨度、梯度和密度)。学生探索兴趣的持续,保持了注意力的高度集中,这是非电教手段中任何教学法无法比拟的。 二、运用电教媒体,指导学生学生探索方法 冯诺依谩说过:“远离经验来源,一直处于“抽象的”近亲交配之中,一门数学学科将有退化的危险。”在数学教学中,抽象与具体、逻辑与直观是永恒的矛盾。太简单的例子不能说明问题,生动有趣的实例又因表达的困难而不易讲清,于是造成理性与感性、理论与应用的脱节。因此,在指导学生的探索方法、培养学生创新意识的过程中,我们必须首先将抽象的问题形象化、庞杂的问题明晰化、静态的问题动态化,而这些目标的达成,是靠运用电教媒体来实现的,特别是CAI,可以闪烁、变色、平移、翻折、旋转和透视等,还可以设计问题模型和供学生探试的情境,这为指导学生的探索方法,开辟了崭新的天地。如和学生研究二次函数的增减性问题,这是一个难点问题,以往都是从静态角度去和学生分析,学生也因此容易走上只记结论不去真正理解函数增减性实质的误区,更不要说让学生去主动探索了,且讲授此知识点十分费时。为此,我们充分利用了电教媒体寓教于乐易探的特点,设计运用了二次函数增减性的二维动画片,如图2。同时,结合分析函数Y与自变量X的对应值表引导学生。 (1)观察函数变化(P点在抛物线上运动……)探索PxPy的变化情况;且分析函数变化(结合X、Y的对应值表),探索函数变化实质; (2)学会总结、探索函数变化的规律。又如,在几何中有这样一个基本图形(如图3),在教材中多次出现,我们对这一基本图形通过多媒体对条件进行增减变化,使学生由浅入深、由简到繁、循序渐进地理解,进而不断提高学生的思维能力和探索水平。这样,就有机地把数形结合、化归等数学思想和方法渗透给学生,从而使学生在教学过程中逐步地学会研究、探索问题的方法,自觉养成自我探索的习惯,这是使学生终身学习、终身受益的能力,同时这也是现代教学中培养学生创造精神的前提。二、 运用电教媒体,加强学生思维训练 “二次函数增减性”二维动画图 “数学是人类思维体操”,学生是在数学问题的提出和解决过程中受到思维训练的。因此,现代数学教育观特别强调要重视问题解决的思维活动过程和知识发生过程的展现,以提高学生的思维能力。然而,传统的数学教学由于受教学技术手段的限制,在这方面常常显得力不从心:如讲抽象的数学概念,难以形象直观地表述;讲数形结合,图形不能召之即来;讲数形运动变化,黑板上的图形却静止不动。所以,我们必须借助各种电教媒体的经验替代功能,将感觉器官、思维触角延伸到浩淼深邃的多维空间,从而达到化远为近、化静为动、化繁为简、化难为易、化虚为实的效果,最大限度地拓展教育的时空领域,利用现代教学媒体展示的奇妙绚丽的声、光、形、色来激起学生强烈的学习兴趣和欲望,特别是在引导学生用变维(改变问题的维度)、变序(改变问题的条件、结论)等方式(发散式)提出新问题,将问题链引向课外或后继课程有其不可替代的特殊功能。如课本上曾要我们证明:“从□ABCD的顶点A、B、C、D向形外任意直线MN引垂线AA'、BB'、CC'、DD',垂足分别是A'、B'、C'、D'[如图4(Ⅰ)],求证AA'+CC'=BB'+DD'”现将直线MN向上平移(多媒体演示),使得A点在直线上侧B、C、D三点在直线的另一侧[如图4(Ⅱ)]再将直线MN向上移动,使两侧各有两个顶点[如图4(Ⅲ)],图(Ⅱ)、(Ⅲ)中AA'、BB'、CC'、DD'之间(相加的两条垂线段在多媒体中用同一颜色不断闪烁,直线MN在符合条件的范围内不断变化,使四条垂线段处于不断变化之中……)又有什么关系?通过多媒体的演示和教师的同步引导,使学生通过“观察——实验——类比——联想——猜想——分析——归纳”的循序渐进过程达到落实思维训练的目的,其中尤其是学生创造性思维能力得到了训练和提高,真可谓有一石(多媒体)三鸟之功效。 电教媒体在优化数学教学导探中的融合性、非线性、互交性和可编辑性的特征满足了学生多角度、多方位、多层次、多联系的思维方式和个别化学习的需要。但电教媒体的音乐、画面、色彩、运动等所表现出的综合艺术效果对学生创造能力的培养与提高,将是一个颇具诱惑力和有很高研究价值的崭新领域,这正如李政道博士在“科学与艺术”研讨会上提出的“美苏之争的实质是什么,直到世纪末我们才明白,他们竞争最深层次的东西是有艺术气质的高科技人才。”所以,作为教师必须站在为培养跨世纪创新人才的高度,在使用电教媒体的同时,还应把数学与各种教学艺术的协调作用作为现代数学创新教学的重要目标之一来追求。另外,多媒体的使用要“适时、适度、适当”,当用则用,不当用是尽量不用。要用在“精彩”之处,用在激发学生兴趣、有利于突破难点、强化重点之处,用在有利于内化教学内容、提高学生创新能力之处。切不可以媒体为中心设计教学过程,不能为了多媒体而忽视学生在学习中的主体性、人文性,充分认识其“辅助”地位,重视发挥学生的主体作用,注意调动学生的积极性、主动性和创造性。只有这样,电教媒体才能在数学教学中真正发挥教师导和学生“探”的互补作用。
139 评论(12)

相关问答