期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    173

tang5921790
首页 > 期刊问答网 > 期刊问答 > 数学与应用数学专业导论课程论文

2个回答 默认排序1
  • 默认排序
  • 按时间排序

shuang9090

已采纳
现代数学方法概论论文经济数学问题例说自1993年5月高考命题组提请注意数学的应用以后,1995年全国高考文理科试题中又出现了一道关于淡水鱼养殖的市场预测的应用题,这是一道数学应用方面的好题,由于它是经济数学方面的问题,从而在建立社会主义市场经济新体制的今天,格外地引起大家的注目。  所谓经济数学问题,就是用数学方法来研究经济学的一些问题,如经济增长率、人口增长率等方面的国民经济问题,银行业务问题,证券市场问题,保险计算问题,消费与市场预测问题,投入产出问题,等等。上述问题中,能用中学生可以接受的初等数学方法解决的一些基础问题都应当引起我们的重视。  下面举几个例子。  例1:某商品的市场需求量P(万件)?、市场供应量Q与市场价格x(元/件)分别近似地满足下列关系: P=-x+70; Q=2x-20当P=Q时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量。  (1)求平衡价格和平衡需求量;  (2)若每件商品征税3元,求新的平衡价格;  (3)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?解:(1)求得平衡价格为30元/件,平衡需求量为40万件。  (2)设新的市场平衡价格为x元/件,此即为消费者支付价格,而提供者得到的价格则为(x一3)元/件,依题意得-x+70=2(x-3)-20,从而解得新的平衡价格为32元/件。  (3)设政府给予t元/件补贴,此时的市场平衡价格亦即消费者支付价格为x元/件,则提供者收到的价格为(x+t)元/件,依题意得方程组-x+70=442(x+t)-20=44 解之得 x=26 t=6  例2:某产品日产量为20台,每台价90元,若日产量每增加1台,则单价就要降低3元,问如何设计生产,使日总收入最大?解:设每日多生产x台,总收入为y元,依题意得 y=(90-3x)(20+x)易得当日产量为25台时,总收入最大。  例3:某厂今年初贷款100万元,复利计息,年利率为10%(即本年的利息计入次年的本金生息),计算从今年末开始每年偿还固定的金额,恰在第12年末还清,问每年偿还的金额是多少万元?解:设每年偿还的金额为X万元,依题意得: x+x(1+10%)+x(1+10%)2+…+x(1+10%)11=100(1+10%)12解之得x=15(万元)09-12-18 | 添加评论 | 打赏0hellomydram11例如:极限的求法 直接代入法适用于分子,分母的极限不同时为零或不同时为 例 求 分析 由于 , 所以采用直接代入法 解 原式= 利用极限的四则运算法则来求极限为叙述方便,我们把自变量的某个变化过程略去不写,用记号表示在某个极限过程中的极限,因此极限的四则运算法则可确切地叙述如下:定理 在同一变化过程中,设都存在,则(1)(2)(3)当分母时,有总的说来,就是函数的和,差,积,商的极限等于函数极限的和,差,积,商求解 无穷小量分出法适用于分子,分母同时趋于 ,即 型未定式例分析 所给函数中,分子,分母当 时的极限都不存在,所以不能直接应用法则注意到当 时,分子,分母同时趋于 ,首先将函数进行初等变形,即分子,分母同除 的最高次幂,可将无穷小量分出来,然后再根据运算法则即可求出极限 为什么所给函数中,当 时,分子,分母同时趋于 呢 以当 说明:因为 ,但是 趋于 的速度要比 趋于 的速度快,所以 不要认为 仍是 (因为 有正负之分) 解 原式 (分子,分母同除 ) (运算法则) (当 时, 都趋于 无穷大的倒数是无穷小) 消去零因子法适用于分子,分母的极限同时为0,即 型未定式例分析 所给两个函数中,分子,分母的极限均是0,不能直接使用法则四,故采用消去零因子法 解 原式= (因式分解) = (约分消去零因子 ) = (应用法则) = 利用无穷小量的性质例 求极限 分析 因为 不存在,不能直接使用运算法则, 故必须先将函数进行恒等变形 解 原式= (恒等变形) 因为 当 时, , 即 是当 时的无穷小,而 ≤1, 即 是有界函数,由无穷小的性质:有界函数乘无穷小仍是无穷小, 得 = 利用拆项法技巧例6:分析:由于=原式= 变量替换例7 求极限 分析 当 时,分子,分母都趋于 ,不能直接应用法则,注意到 ,故可作变量替换 解 原式 = = (令 ,引进新的变量,将原来的关于 的极限转化为 的极限) = ( 型,最高次幂在分母上) 分段函数的极限例8 设 讨论 在点 处的极限是否存在 分析 所给函数是分段函数, 是分段点, 要知 是否存在,必须从极限存在的充要条件入手 解 因为 所以 不存在 注1 因为 从 的左边趋于 ,则 ,故 注2 因为 从 的右边趋于 ,则 ,故 宏志网校 俊杰1、利用定义求极限。2、利用柯西准则来求。 柯西准则:要使{xn**有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|<ε 3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^5)^5/(x+1)^5 =lim(x^5)(1+1/x^5)^5/(x^5)(1+1/x)^5 =4、利用不等式即:夹挤定理。 5、利用变量替换求极限。 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/ 6、利用两个重要极限来求极限。 (1)lim sinx/x=1 牐爔->0 (2)lim (1+1/n)^n=e 牐爊->∞ 7、利用单调有界必有极限来求。 8、利用函数连续得性质求极限。9、用洛必达法则求,这是用得最多的。 10、用泰勒公式来求,这用得也很经常。 按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成  a1,a2,a3,…,an,…  简记为{an},项数有限的数列为“有穷数列”(finite sequence),项数无限的数列为“无穷数列”(infinite sequence)。  从第2项起,每一项都大于它的前一项的数列叫做递增数列;  从第2项起,每一项都小于它的前一项的数列叫做递减数列;  从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;  各项呈周期性变化的数列叫做周期数列(如三角函数);  各项相等的数列叫做常数列。  通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。  数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。  如果可以用一个公式来表示,则它的通项公式是a(n)=f(n)[编辑本段]表示方法  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1  如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)[编辑本段]等差数列  【定义】  一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。  【缩写】  等差数列可以缩写为AP(Arithmetic Progression)。  【等差中项】  由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。  有关系:A=(a+b)/2  【通项公式】  an=a1+(n-1)d  an=Sn-S(n-1) (n>=2)  【前n项和】  Sn=n(a1+an)/2=n*a1+n(n-1)d/2  【性质】  且任意两项am,an的关系为:  an=am+(n-m)d  它可以看作等差数列广义的通项公式。   从等差数列的定义、通项公式,前n项和公式还可推出:  a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}   若m,n,p,q∈N*,且m+n=p+q,则有  am+an=ap+aq  Sm-1=(2n-1)an,S2n+1=(2n+1)an+1  Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。  和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项  末项=2和÷项数-首项  设a1,a2,a3为等差数列。则a2为等差中项,则2倍的a2等于a1+a3,即2a2=a1+a3。  【应用】  日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别  时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。  若为等差数列,且有an=m,am=则a(m+n)=0。[编辑本段]等比数列  【定义】  一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。  【缩写】  等比数列可以缩写为GP(Geometric Progression)。  【等比中项】  如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。  有关系:G^2=ab;G=±(ab)^(1/2)  注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G^2=ab是a,G,b三数成等比数列的必要不充分条件。  【通项公式】  an=a1q^(n-1)  an=Sn-S(n-1) (n≥2)  【前n项和】  当q≠1时,等比数列的前n项和的公式为  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)  【性质】  任意两项am,an的关系为an=am·q^(n-m)  (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}   (4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。   性质:   ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;   ②在等比数列中,依次每 k项之和仍成等比数列   “G是a、b的等比中项”“G^2=ab(G≠0)”  (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)  在等比数列中,首项A1与公比q都不为零   注意:上述公式中A^n表示A的n次方。  【应用】  等比数列在生活中也是常常运用的。  如:银行有一种支付利息的方式---复利。  即把前一期的利息赫本金价在一起算作本金,  在计算下一期的利息,也就是人们通常说的利滚利。  按照复利计算本利和的公式:本利和=本金*(1+利率)^存期  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。   (1)等比数列的通项公式是:An=A1*q^(n-1)  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。  (2)求和公式:Sn=nA1(q=1)   Sn=A1(1-q^n)/(1-q)   =(a1-a1q^n)/(1-q)  =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)  (前提:q不等于 1)  任意两项am,an的关系为an=am·q^(n-m)  (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}   (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1  另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。[编辑本段]一般数列的通项求法  一般有:  an=Sn-Sn-1 (n≥2)  累和法(an-an-1= an-1 - an-2= a2-a1=将以上各项相加可得an)。  逐商全乘法(对于后一项与前一项商中含有未知数的数列)。   化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。  特别的:  在等差数列中,总有Sn S2n-Sn S3n-S2n  2(S2n-Sn)=(S3n-S2n)+Sn  即三者是等差数列,同样在等比数列中。三者成等比数列  不动点法(常用于分式的通项递推关系)[编辑本段]特殊数列的通项的写法  1,2,3,4,5,6,7, ---------an=n  1,1/2,1/3,1/4,1/5,1/6,1/7,1/-------an=1/n  2,4,6,8,10,12,-------an=2n  1,3,5,7,9,11,13,-------an=2n-1  -1,1,-1,1,-1,1,-1,--------an=(-1)^n  1,-1,1,-1,1,-1,1,-1,--------an=(-1)^(n+1)  1,0,1,0,1,0,1,01,0,1,0,------an=[(-1)^(n+1)+1]/2  1,0,-1,0,1,0,-1,0,1,0,-1,-------an=cos(n-1)π/2=sinnπ/2  9,99,999,9999,99999, ------an=(10^n)-1  1,11,111,1111,--------an=[(10^n)-1]/9  1,4,9,16,25,36,49,------an=n^2  1,2,4,8,16,--------an=2^(n-1)[编辑本段]数列前N项和公式的求法  (一)等差数列:   通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数   an=ak+(n-k)d ak为第k项数   若a,A,b构成等差数列 则 A=(a+b)/2   等差数列前n项和:   设等差数列的前n项和为Sn   即 Sn=a1+a2++an;   那么 Sn=na1+n(n-1)d/2   =dn^2(即n的2次方) /2+(a1-d/2)n   还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法   (二)等比数列:   通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项   an=a1*q^(n-1),am=a1*q^(m-1)  则an/am=q^(n-m)   (1)an=am*q^(n-m)   (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)   (3)若m+n=p+q 则 am×an=ap×aq   等比数列前n项和

数学与应用数学专业导论课程论文

217 评论(12)

yangmeng

(一)题名(Title,Topic)  题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文格式相关书籍  论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。(二)作者姓名和单位(Author and department)  这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要(Abstract)  论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。(四)关键词(Key words)  关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。  主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。  技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。  技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。  技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。  技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。
341 评论(9)

相关问答