nanhu1984
数学是人类文化的重要组成部分,数学意识的形成、数学思想和方法的掌握、数学模型的建立,都对科技的发展起着至关重要的作用。要学会用数学的思维去观察问题、提出问题、分析问题、解决问题,然后对问题进行概括和创新性研究,只有在素质教育的环竟中实现。当前,学校教育仍然不同程度地存在着“应试教育”的成份,扼杀了学生的创新思维,削弱了学生的实践能力。当然,也欣喜地看到我国正加大教材改革的力度,实施素质教育,广大教育工作者也正努力适应新形势,积极开展素质教育。本文把自己观察到地变化趋势讲述如下。 一、 转变教师角色,以新的理念指导教学 面对21世纪的教育改革,数学教学要充分体现“生活化”、“活动化”、“个性化”特征,要求数学教师必须更新教学观念,不仅要有科学的数学观,还应从数学的哲学层面形成数学文化观念、数学价值观念和数学应用观念,逐步从静态的、绝对主义数学观向动态的、人文主义和科学主义相结合的数学观转变。因此,教学中教师充分尊重学生的人格和学生在数学学习上的差异,激发了学生的兴趣,有利于学生形成积极探索的态度,勤奋好学,勇于克服困难和不断进取的学风。同时教师也开始更新对学生学习评价的观念,既重视学生知识技能的掌握和能力提高,又重视其情感态度和价值观的变化,将评价贯穿数学学习的全过程,及时发现学生的闪光点并加以肯定,突出了数学评价的激励与发展功能,利于增进师生感情,建立和谐的师生关系。新课程教学突出学生的探究能力和合作学习能力的培养,注重三维目标的落实,在教学中精心设计问题,探索、发现解决问题的途径及方法,教师尽当好导演,挖掘学生最大潜能,真正体现以人为本的教育理念。 二、面向全体学生,转变教学组织方式 现代教育观认为,素质教育其实质是对学生实施主动性教育。因此,在课堂教学中教师一改过去地满堂灌为适当引导学生积极主动地参与知识的形成过程,使学生真正感到自己是学习的主人。由于学生在知识、技能和能力方面的发展和志趣、特长等不尽相同,教师因材施教。在组织教学时,从大多数学生的实际出发,并兼顾学习有困难和学习有余力的学生。在数学学习中,个人努力与合作学习相结合则能促进学生对数学的理解。在交流和讨论中,可能澄清认识,纠正错误,这有助于扩展思路,提高能力,加强自信。 三、实施“问题解决”,培养创新品质 问题是数学的心脏,学生的发展离不开丰富的问题及其解决。发现问题,大胆怀疑,探奇索引,也是创造型人才的重要品质。在数学教学中,教师开始注重创设问题情境,提出具有开放性、挑战性的问题,引发学生浓厚的兴趣;鼓励学生在数学活动中发挥自己的想象力和创造性,主动地发现问题、提出问题、探究问题,使课堂教学在学生独立思考、动手实践和合作交流的活动中不断的生成新的问题,在一个又一个问题的解决过程中发展学生的思维,促进学生主动地思考与实践。即使某些问题是可笑的,某些发现是错误的,某些探索是失败的,教师也不挖苦讽刺,而以积极的态度加以鼓励,并帮助学生分析错误和失败的原因,变错误为正确,不挫伤学生的创造积极性,使学生思想中产生的创造火苗得以燃烧和发展,使认识进入一个又一个崭新的高度,从而使学生的创新意识和创新能力得到提高。 四、加强学生学习能力与自学习惯的培养 自学能力是学生独立掌握和运用知识的能力,它对学生毕业后的升学或就业具有十分重要的意义。培养自学能力,在掌握和运用知识、技能的过程中逐步完成。在培养学生自学能力的基础上,进一步培养他们的自学习惯,这不仅是学生今天学习的需要,也是未来工作的需要。忽视自学,学生只能囿于教师讲解的范围,既不能充分思考消化,也不能广泛涉猎知识,开拓视野。因此教师根据每个学生的能力差异和兴趣爱好,培养他们独立自学的习惯。在教学中,教师要引导、鼓励学生积极开展研究性学习,提高自己的学习水平、研究能力和创新能力,从而造就了大批肯动脑筋、勤于实践、富有创新精神的青年学生。 五、加强学生良好思维品质的培养 一个创造型的人,必须善于多向思维,因此教学中,教师经常鼓励学生摆脱固有的模式,善于从不同的角度和方法去思考问题(思维的灵活性),不要满足于停留在表面现象上,引导学生善于概括归类,善于抓住事物的本质和规律,善于预见事物发展的进程,把思维引向一定的深度和广度(思维的深刻性)。鼓励学生思考问题敏捷,反应速度快(思维的敏捷性)。培养学生对自己的作业和结果独立的进行评价和分析,敢于有论据地坚持自己的观点和信念,坚持独立思考,善于发问(思维的批判性)。在课堂教学中,教师鼓励学生奇思妙想,留有足够的时间和空间,让学生自己去想,暴露学生自己的思维,充分相信学生的聪明才智。这样教学,学生与教师都从中受到启发,使得思维在更广阔的空间得到发展。 六、信息技术与数学课程整合,增强学生数学素养 现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等多方面产生深刻影响。信息技术提供资源环境,信息技术进入数学教学,突破并扩展以数学教科书及其其他参考资料为主要来源的信息源,用各种相关资料来丰富封闭的、孤立的数学课堂教学,扩充知识容量。在教学过程中,教师应尽量实现信息技术与课程的整合,如,充分利用计算机技术直观演示数学模型所刻画的数量关系,利用计算机软件呈现大量的空间几何体,帮助学生认识其结构特征,培养空间想象能力等等。信息技术与数学课程整合,丰富了学生的数学文化,增强学生的数学素养,大大提高了教学效果。 
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学
你的问题问的太宽泛了,我就是搞建模的,都不到从何开始回答你,想要进一步讨论的话可以hi我。论文七大部分肯定是必不可少的:问题重述,模型假设,问题分析,模型建立,模型求解,结果分析及检验,(包括灵敏度分析,如果需要的话)模型推广,当然还得有目录和摘要以及参考文献了