Barney992
物理小论文生活中有很多的物理现象,许多简单的现象可以用所学知识去解答。现象一:飞快的火车有一个安全距离,当我们在公路上步行时,不宜靠中太近,除了害怕离线的车会撞到之外。还有一个意料之外的原因,对此本文将作出解答。现象二:取两片很薄的纸,将他们贴近,用力的吹,我们并不能将纸吹开,反而出现被“吹拢”的情况。现象三:,对于相同流量的水而言,口径大的水龙头,水的流速很慢,但是对于口径小的水龙头,可以明显的看到流速加快了。这是什么原因呢?总结来看,空气和水都是流体,在两者之间有着一定的共同点,都遵循流体的基本性质,在流体的学习中有两个很重要的方程叫:伯努利方程和连续性方程。用它们就可以很简单的解释上面三个现象。首先,伯努里方程的基本表达式为:P+1/2pv+pgh=恒量。P指流体周围的压强大小,p指流体本身的密度,v指流体的速度。在上述但现象中,可把水和空气近似的看作理想流体,且它们作常流动。在以上前两种情况中,都可以将pgh看作是不变的,所以我们很容易的就得到P+1/2pv=恒量。容易得出压强和速度成反相关。下面将对三个现象作出具体的解释。解释现象一:其中提到一个意外的原因就是很有可能身边的空气将我们“推”向汽车而发生意外。为什么这么说?当车飞快的从我们身边开过的时候,对周围的空气造成了影响:使它们的速度加快,在这样的情况下,根据上面的推倒易知:速度过快造成周围空气的压强减小,在汽车周围形成一个压强差,在车周围的事物就容易被“压”到车下。这是相当危险的,所以步行要尽量的靠边走。解释现象二:当两片薄纸靠近,我们将它们看成和外面的空气分开,当我们吹气时,使得两纸间少量的空气流速加大,压强减小,外围的空气使得纸片贴在一起。解释现象三:同流量即体积相同,所以易知SV=S V。这就是理想流体的连续性方程。它表示理想流体作定常流动时,流体的速率与流管截面积的乘积是一个恒量。由此可知,当我们将口径边小时,必然导致流速加快。根据个原理在科技上也有很大的运用,比如切割水枪,对于一样的出水量,这种水枪的口径很微小,使得出水的速度极快,所含动能极大,在生产上有很大的运用。最后,要介绍一个很实用的方法:取水。在家中,看到大人用一根管子插到水里,用嘴在管口吸气,水就会自己流出来,我也试过,但没有成功,现在我目标了原因:必须保证吸气的一端低于出水的一端,为什么呢?这是利用了大气压的原理。当吸气后管子里成为真空,水就被外界大气压压倒了出水端。物理在我们的生活中有很大的作用,我们可以借着生活来学习物理,再利用物理来服务生活。 
什么学校……那么麻烦……其实重不重复都是浮云,假期作业老师不会看的……
两类力做功的特点:重力(电场力)做功只与初、末位置有关,与运动的路径无关;如滑动摩擦力做功与运动的路径有关,且当力的大小保持不变时做功等于力的大小与路程的乘积。摩擦力做功的特点:在静摩擦力做功的过程中,只有机械能的相互转移,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能。相互摩擦的系统内,一对静摩擦力所做功的和总是为零。一对滑动摩擦力做功的过程中,能量的转化有两个方面:一是相互摩擦的物体之间机械能的转移,二是机械能转化为内能,转化为内能的量值等于滑动摩擦力与相对位移的乘积,一对滑动摩擦力所做功的和为负值,其绝对值等于系统损失的机械能。机械能是否守恒的判断:从做功来判断:分析物体或物体系受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功,则机械能守恒。从能量转化来判断:若物体或物体系中只有动能和重力势能、弹性势能的相互转化而无机械能与其他形式的能的转化,则物体或物体系机械能守恒。如绳子突然绷紧、物体间碰撞贴合等现象时,机械能不守恒。功能关系各个力所做的总功等于物体动能的变化;重力做功等于重力势能变化量的负值;弹簧弹力做功等于弹性势能变化量的负值;除了重力和弹簧弹力以外其他力所做的功等于物体机械能的变化。【例】如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A和B,A套在光滑水平杆上,定滑轮离水平杆的高度h=2m,开始时让连着A的细线与水平杆的夹角θ1=37°,由静止释放B,当细线与水平杆的夹角θ2=53°时,A的速度为多大?在以后的运动过程中,A所获得的最大速度为多大?(设B不会碰到水平杆,sin37°=6,sin53°=8,取g=10m/s2)【解析】对A、B两物体组成的系统,只有动能和重力势能的相互转化,机械能守恒。设绳与水平杆夹角θ2=53°时,A的速度为υA,B的速度为υB,此过程中B下降的高度为h1,则有:mgh1=■mv2A+■mv2B,其中h1=■-■,A、B两物体沿绳方向速度相等即:υAcosθ1=υB代入数据,解以上关系式得:υA=1m/sA沿着杆滑到左侧滑轮正下方的过程,绳子拉力对A做正功,A做加速运动,此后绳子拉力对A做负功,A做减速运动。故当θ3=90°时,A的速度最大,设为υAm,此时B下降到最低点,B的速度为零,此过程中B下降的高度为h2,则有:mgh2=■mυ2Am,其中h2=■-h代入数据解得:υAm=63m/s。