期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    90

0909草学
首页 > 期刊问答网 > 期刊问答 > 数学分析方面的论文摘要

5个回答 默认排序1
  • 默认排序
  • 按时间排序

qijisnoopy

已采纳
英文翻译就是:Inequality in mathematics as an important section, in every field of mathematics plays a very important Inequality proof is often encountered in the mathematical analysis and comparison of the difficulties, known as proof of inequality in higher mathematics plays an important role in the paper through in-depth Basic knowledge of inequality and further research method of inequality proof, thus make the problem has proved inequality The concept of inequality, although very simple, but inequality proof, due to the topic and various methods, plus skill, without fixed rules, more often than not easy to find, so difficult to For some of the more complex inequality proof, very But with higher mathematics knowledge is relatively Keywords: inequality, Methods, 绝对标准答案

数学分析方面的论文摘要

92 评论(13)

化空

摘要:数学分析是数学类专业的一门基础课。本文主要运用倒推法来证明数学分析中的命题,不仅在内容上为学习数学分析提供了必要的基础知识, 而且它所体现的分析思想、逻辑推理方法、处理问题的技巧, 在整个数学学习和科学研究中, 起着重要作用。 对某一件事情的处理,如果采用的方法是从事情的结果出发,一步步往回推,最后推出产生事情的原因,这种解决问题的方法就称为倒推法。倒推法的应用,给解决问题带来了极大方便。倒推法是从命题中的结论入手,分析要证明结论需满足的条件,再从命题的条件中去挖掘需满足的条件,从而达到证明数学分析命题的目的。倒推法也是证明数学分析命题中的常用方法,本课题总结归纳倒推法证明数学分析命题中的思路及应用。 本文主要运用倒推法来分析证明数学分析中的命题;探讨和研究倒推法在证明数学分析命题中的运用。使得对命题的证明思路更加清晰明确,更便于理解数学分析中命题的证明。
303 评论(14)

xinghuabeichen

摘要:本文通过对高中生的调查研究发现当前高中生的数学观存在不够全面、不够准确、不够科学的现象,为此提出了通过数学史来影响高中生数学观之假设.经过为期一年多的实验和探索,发现数学史对改变学生的数学观能产生积极的影响,对学生的学习兴趣和学习效果也有明显的作用.因此积极倡导应用数学史来为数学教学服务.关键词:数学观;数学史;对数;复数教学中,经常有学生提出这样的问题:“老师,我怎么对数学就是没兴趣?”“老师,学了这些概念、定理和公式到底将来有什么用?”更有甚者问到:“老师,你为什么要逼我学数学,我将来也不搞数学研究。”……的确,当前不少学生因为想不通数学就认为数学是一门枯燥乏味、难以学习的学科;因为不理解数学就认为数学是一门概念和规则从天而降的游戏;因为没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试;因为没有领悟数学的思想和精神就认为“概念我会背,公式我会用,定理我会证,题目我会做”是学好数学的最高标准……这些现象表明,学生思想深处的问题已经不能等闲视之了,为此笔者开展了相关研究。一、对高中生数学观的现状分析高中生的数学观主要是指学生关于数学本身的信念,关于数学学习的信念和关于自身的信念。[1]由于个体具有不同的知识背景,或接受了不同哲学观念,或受不同教师的影响,再加上自己的实践经验,因此在数学学习过程中便逐渐产生和形成各自不同的认识和体会。(1)对数学本身的信念学生在数学学习过程中,对数学本身的感受和认识不尽相同。通过对614名高中生的调查发现,约5%的人“从未想过数学是什么”;9%的人“曾经想过数学是什么,但不清楚是什么”;8%的人“曾经听老师说过数学是什么”;8%的人“曾经想过数学是什么,所以知道是什么”。但在他们眼中,数学主要是与数字、图形有关的问题;是由概念、公式、定理、法则、符号组成的一门学科;是技巧性和方法性很强但又不易把握的一门学科;是关于计算、解题的一门学科;是讨论空间形式与其数量关系的学科……(2)对数学学习的信念Davis等人的调查(李士锜2001,217-222)表明:学生在学习过程中,对数学学习持有不同观点和看法。笔者调查发现高中生的数学学习信念主要是:①学数学就是要会做题目;②学数学就是为了在考试中取得好成绩;③学数学主要靠记忆、模仿、套公式;④学数学就是要培养一个人的计算能力、思维能力;立体几何主要培养一个人的逻辑推理能力和空间想象能力;⑤学数学就是学会用所学的数学知识解决实际生活中的问题。(3)对自身学习数学的信念学生对自身学习数学的信念差异明显,在调查中发现:①信心十足──有人对数学充满浓厚的兴趣,认为自己在数学方面有一定的天赋和优势,有信心、有能力学好数学。②信心平淡──有人对数学的兴趣一般,认为自己在数学方面没有多少天赋和优势,但是只要自己勤奋努力,刻苦钻研,还是能够达到基本要求的。③信心缺乏──有人对数学不感兴趣,认为自己根本没有学习数学的天赋,没有学好数学的能力。他们经常说自己从小学到现在数学都一直很差,由此来表明自己是学不好数学的。(4)数学观的类型根据调查分析,高中生的数学观不妨可归纳为以下几种:①动态的数学观。在学生眼中,数学是不断变化、发展过程中的知识,从而可能会出现不足和错误,只有通过不断地尝试、改正和改进才会逐渐完善。所以学习数学也是一个循序渐进,不断完善的过程。对自己的困惑和错误能够宽容,同时也知道只有采取积极的态度才会学好数学。②静态绝对主义数学观。他们把数学知识看成自古有之、千年不变的、不容置疑的真理的集合,是一个高度严密、极端抽象的知识体系。因此,他们多强调接受和记忆,模仿和训练,提倡熟能生巧;或认为自己的记忆能力不行,抽象能力又较差,所以数学学习必然困难等想法。③工具主义的数学观。他们认为学数学就是学会处理和解决各类(数学)问题的方法和技巧。所以他们比较重视做应用题,提倡将数学与生活紧密结合,也比较注意积累与数学有关的素材。④文化主义数学观。他们认为数学是与社会性质、阶级意识、民族精神等有一定关系的人类文化,是一种反应人们思维方法、审美意识与文化价值观念的特定的知识体系。当然这种观念在学生中间被发现、被接受的较少。上述各种观念从不同的角度反映了学生对数学本身的理解和领会,对数学价值的认识和判断。当然有些观念对学生的学习起到积极促进作用,而有些则明显会导致消极的负面影响。二、数学观对数学学习的影响分析数学观对学生数学学习究竟有多大的影响,目前尚缺乏确切的数据分析。但从历史材料和当前的研究表明,学生的数学观对其学习方式和学习成果是有相当影响的。Schoenfeld研究表明学生思想观念的发展已经成为数学学习过程中的重要因素,数学信念与数学成绩之间存在明显的相关性。[2]Carlson研究发现一些普遍存在的和持续的数学观念在他们的后继学习中起着决定性作用。[3]郑毓信指出,对于学生来说,观念的重要性在于数学学习不仅是指知识的学习和能力的提高,而且也是一个观点、信念、态度等形成的过程,而后者则将对他们今后的数学学习、乃至整个人生产生重要的影响。[4]事实上,对个体而言,正确的数学观可以统摄个体自身的各种因素,使之积极参与到学习活动之中。如果学生没有一定的数学观念,那么他将是主动精神缺乏、主体意识单薄、只会按指令被动行事的人;如果学生对数学的看法和课程蕴藏的数学观不一致,那么这种观念便可能成为其学习的障碍;如果学生面对数学处境而未能意识到它与数学有关,那么他就不会着手以数学方法来处理;如果学生把数学看作是与社会生产实践活动无关的概念、定理、符号的集合,那么他们在学习过程中就必然会采取一种静止的、被动的态度来接受“数学真理”;如果学生把数学看作是数学家凭空想象、自由创造的产物,那么一种远离社会、脱离客观、极其严密、高度抽象的刻板印象就会占领他们心灵的上空,使他们在学习过程中必然产生一种兴趣不大、意义不大,或难度太大、敬而远之的心理;如果学生把数学看作思维的体操,认为学数学就要反复用脑,那么数学仿佛就变成了度量一个人聪明与否的标尺,当他们解决不了数学问题而产生挫折感时,便会觉得自己智力不如别人而悲观失望;如果学生认为数学学习就是计算、就是解题,那么在他们眼中,数学与算式、公式﹑列式有着不可分割的关系,或者认为数学就是给出一堆数字、然后通过算式找出答案的活动,那么他们对冗长繁杂的计算、无边无际的题海必然会丧失兴趣;如果学生认为数学学习就是模仿智力超群的数学家或数学教师的思维,那么他们常丧失信心,自叹不如。实践证明,学生的数学观的确影响着他们的学习态度、学习兴趣,影响着他们对认知材料的选取,对认知方式的选择,对学习结果的评价。(李士锜2001,211)对群体而言,数学观可以统摄个体之间的各种力量,使之积极参与到社会建构活动之中。学习是一种社会建构活动,存在着师师、生生、师生以及学生与家庭、学生与社会交往的多种形态。在这些活动中,数学观一方面提供活动的基本准则,以此来调节主体的行为方式,决定交往的程度和范围。另一方面,通过个体数学观的沟通、交流和碰撞,主体间逐渐达成共识、形成合力。尽管同一群体中的数学观存在着个体差异,但总有一种主导的数学观在起作用,也正是这样主导观念使得整个班级对数学的学习目标、学习方式、评价标准趋向一致,从而保证学习活动顺利进行。相反,如果学生之间,师生之间,学生与教材之间的数学观经常抵触、矛盾和冲突,缺乏维系的纽带,就会出现“形聚神散”的状态,学习活动就难以真正有效开展。三、数学史影响高中生数学观的实验探索1、实验目的数学史与数学教育的关系早在1876年丹麦著名数学家和数学史家H G Zeuthen就强调,“通过数学史的学习,学生不仅获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力。” [5] 1977年,美国学者McBride和Rollins发现数学史在提高学生数学学习积极性方面是十分有效的[6].Wilson和Chauvot指出,让学生和教师思考“谁做数学”、“数学怎么做”、“数学是什么”等问题,让学生了解数学与其他学科、数学与社会的广泛联系,能拓宽对数学本质的看法[7].英国数学史家J Fauvel曾总结了20条将数学史运用于数学教学的理由,其中之一是数学史可以改变学生的数学观[8].Breugel指出有关数学概念是怎样发展的历史知识有助于学生理解概念,并向学生指明了数学是人类在特定历史时期所创造的,而不是历来就有、永恒不变的[9].自从1972年“数学史与数学教育之关系国际研究小组”(International Study Group on the Relations between History and Pedagogy of Mathematics,简称HPM)成立以来,欧美更多的学者对数学史与数学教育的关系进行了大量研究。国内也有一些学者再关注数学史与数学教育的关系。但数学史能否改变学生的数学观,从而影响他们的数学学习,国内外有关实证研究仍不多见。本文既受历史的启发,又拟在前人研究成果的基础上,进一步探索数学史对高中生数学观究竟是否产生影响。2、被试的确定实验班:苏高工校区03预科4班;控制班:苏高工校区03预科3班.实验班和控制班是随机选定的.两个班的数学教学由笔者一人承担.3、实验过程⑴前测.对两个班学生数学成绩进行测试,结果见表3 .对两个班学生数学观进行问卷调查(见附录一),结果见表4.⑵实验方法①结合教学内容,介绍相关历史为期一年的教学过程中,在实验班每周至少介绍一项有关的数学史知识,在控制班以解题和练习代之.②选择部分内容,测试对比研究实验一:对数概念学习对数概念时,在两个班采用了不同的教学方式.一是按课本体系组织教学;另外是结合阅读材料《对数与指数发展简史》,解答学生的各种问题,同时也引发了一堂意想不到的对数课[10].课后测试(见附录二)结果统计如下:表1 两个班对数概念学习前、后测试统计表结果表明:学习“对数发展简史”之后,控制班对“对数”学习的难度明显降低,对学习对数的兴趣明显提高,对学习对数的目的更加明确,对对数产生的过程更加清楚.实验二:复数概念在两个班按不同方式组织教学.在控制班按课本内容和体系组织教学.在实验班从复数发展的历程组织教学.调查(见附录三)结果如下:表2 两个班对复数概念学习测试统计表结果表明:实验班对虚数的接受程度高于控制班,把虚数看成是有意义的、真实存在的数的比例大于控制班;将数系看成是动态发展的比例高于控制班.从课后交流中也了解到:历史过程的引入使学生对数的概念的认识更加充分、更加准确、更加深刻.① 复数是按一定方式构造的.复数的产生是从“运算可以无限制地进行的原理”出发,数学内容的组织化、系统化的过程[11].这是人类构造数系的一种方式,也是学生建构数系认知结构的方式之一.② 复数的产生是一个历史发展过程.通过对复数发展过程的剖析,学生认识到复数是几代人共同努力的产物;是一个从无到有、从疑惑到接受、从模糊到清晰、从片面到完善的过程;是随着社会的发展、数学本身的发展而发展的.复数是对实数理论补充和推广后产生的.这是数学本身内部成果积累,引导新的抽象阶段,向新的概括性概念上升的必然结果 [12].③ 虚数不是神秘莫测、绝对权威的.从虚数概念“生长”过程来看,即使是数学家的认识也是逐步深入的.最初人们对虚数持怀疑和不接受的态度.莱布尼兹称虚数是“理想世界的奇异创造”,是“神灵的美妙的庇护者,几乎介于存在和不存在之间的两栖物”[13].欧拉尽管用它,但也认为虚数只存在于想象之中.直到哈密尔顿把复数建立在实数理论基础之上,以及复数在物理学等领域中的应用加强时,人们才开始真正接受虚数.这与学生学习时,缺乏了解它们的实际应用而造成对概念理解和接受上有一定的心理障碍是一致的.但历史的呈现有助于学生打消神秘的心态和权威的心理,减少排斥的情绪.④ 复数产生和发展是人们思想观念的突破.象这样的方程没有实数解在学生心目中已成定论,既然没有实数解,为什么还要讨论它?既然负数不能开平方,又为什么要承认是有意义的?这是一种心理上的矛盾、认知上的冲突,更是观念上的封闭.辩证法告诉我们:世界上没有任何东西是完全不变和无论如何也不发展的.任何数学概念,不管它是怎样被精确定义,也还是要随着科学的发展而发展的.人们对事物的认识总是螺旋式上升的.通过对历史的考察,大家体会到虚数的引入是一种创造,一种发明,一种思维上突破,一种观念上的更新.⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束后,再对两个班统一测试和问卷调查(见附录一),结果如下:表3 两个班期初、期末考试成绩统计表注:⑴实验班与控制班期初成绩,所以两个班学生成绩无显著差异.⑵实验班与控制班期末成绩,故不能认为数学史对学生成绩没有影响.表4 两个班期初、期末问卷调查统计表结果表明:数学史的介绍明显提高了实验班学生数学学习兴趣;加强了学生数学学习动机,转变了数学观念;让学生更加了解了数学的本质,也促进了数学成绩的提高.4 结论通过一年的调研发现,数学史一定程度上能改变学生的数学观,从而影响数学学习.① 通过对历史的了解,学生可以缩短心理上接受某一观念的时间.② 通过对历史的分析,学生可以接受数学是人类社会活动的结果.③ 数学史有助于培养学生动态的数学观.④ 数学史有助于培养学生的创造发明观.⑤ 数学史有助于培养学生的数学文化价值观.⑥ 数学史有助于学生了解数学形式化、抽象化、精确化的过程.⑦ 数学史有助于改变教师的数学观从而影响学生的数学观.5几点建议基于本文的研究,我建议:高度重视学生数学观的培养;认真处理数学史与数学教材的关系;组织编写合适的历史材料;认真组织在职教师的数学史培训;大力开展HPM研究.
166 评论(8)

kycg~fgl

Inequality in mathematics as an important section, in every field of mathematics plays a very important Inequality proof is often encountered in the mathematical analysis and comparison of the difficulties, known as proof of inequality in higher mathematics plays an important role in the paper through in-depth Basic knowledge of inequality and further research method of inequality proof, thus make the problem has proved inequality The concept of inequality, although very simple, but inequality proof, due to the topic and various methods, plus skill, without fixed rules, more often than not easy to find, so difficult to For some of the more complex inequality proof, very But with higher mathematics knowledge is relatively Keywords: inequality, Methods, prove
192 评论(13)

桥下一池琉璃

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等
281 评论(10)

相关问答