期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    153

449836384
首页 > 期刊问答网 > 期刊问答 > 电气方面论文英文免费下载

2个回答 默认排序1
  • 默认排序
  • 按时间排序

欧阳--枫郎

已采纳
1主题内容与适用范围  1本导则适用于电压等级在35~220kV的国产油浸电力变压器、6kV及以上厂用变压器和同类设备,如消弧线圈、调压变压器、静补装置变压器、并(串)联电抗器等。  对国并进口的油浸电力变压器及同类设备可参照本导则并按制造厂的规定执行。  2本导则适用于变压器标准项目大、小修和临时检修。不包括更换绕组和铁芯等非标准项目的检修。  3变压器及同类设备需贯彻以预防为主,计划检修和诊断检修相结合的方针,做到应修必修、修必修好、讲究实效。  4有载分接开关检修,按部颁DL/T574-95《有载分接开关运行维修导则》执行。  5各网、省局可根据本导则要求,结合本地区具体情况作补充规定。  2引用标准  GB1~5-85电力变压器  GB1~5-86油浸式电力变压器技术参数和要求  GB7251-87变压器油中溶解气体分析和判断导则  GBJ148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范  GB7665-87变压器油  DL/T572-95电力变压器运行规程  DL/T574-95有载分接开关运行维修导则  3检修周期及检修项目  1检修周期  1大修周期  1一般在投入运行后的5年内和以后每间隔10年大修一次。  2箱沿焊接的全密封变压器或制造厂另有规定者,若经过试验与检查并结合运行情况,判定有内部故障或本体严重渗漏油时,才进行大修。  3在电力系统中运行的主变压器当承受出口短路后,经综合诊断分析,可考虑提前大修。  4运行中的变压器,当发现异常状碚或经试验判明有内部故障时,应提前进行大修;运行正常的变压器经综合诊断分析良好,总工程师批准,可适当延长大修周期。中华人民共和国电力工业部1995-06-29发布1995-11-01实施  2小修周期  1一般每年1次;  2安装在2~3级污秽地区的变压器,其小修周期应在现场规程中予以规定。  3附属装置的检修周期  1保护装置和测温装置的校验,应根据有关规程的规定进行。  2变压器油泵(以下简称油泵)的解体检修:2级泵1~2年进行一次,4级泵2~3年进行一次。  3变压器风扇(以下简称风扇)的解体检修,1~2年进行一次。  4净油器中吸附剂的更换,应根据油质化验结果而定;吸湿器中的吸附剂视失 程度随时更换。  5自动装置及控制回路的检验,一般每年进行一次。  6水冷却器的检修,1~2年进行一次。  7套管的检修随本体进行,套管的更换应根据试验结果确定。  2检修项目  1大修项目  1吊开钟罩检修器身,或吊出器身检修;  2绕组、引线及磁(电)屏蔽装置的检修;  3铁芯、铁芯紧固件(穿心螺杆、夹件、拉带、绑带等)、压钉、压板及接地片的检修;  4油箱及附件的检修,季括套管、吸湿器等;  5冷却器、油泵、水泵、风扇、阀门及管道等附属设备的检朔;  6安全保护装置的检修;  7油保护装置的检修;  8测温装置的校验;  9操作控制箱的检修和试验;  10无盛磁分接开关和有载分接开关的检修;  11全部密封胶垫的更和组件试漏;  12必要时对器身绝缘进行干燥处理;  13变压器油的处理或换油;  14清扫油箱并进行喷涂油漆;  15大修的试验和试运行。  2小修项目  1处理已发现的缺陷;  2放出储油柜积污器中的污油;  3检修油位计,调整油位;  4检朔冷却装置:季括油泵、风扇、油流继电器、差压继电器等,必要时吹扫冷却器管束;  5检修安全保持记装置:包括储油柜、压力释放阀(安全气道)、气体继电器、速动油压继电器等;  6检修油保护装置;  7检修测温装置:包括压力式温度计、电阻温度计(绕组温度计)、棒形温度计等;  8检修调压装置、测量装置及控制箱,并进行调试;  9检查接地系统;  10检修全部阀门和塞子,检查全部密封状态,处理渗漏油;  11清扫油箱和附件,必要时进行补漆;  12清扫并绝缘和检查导电接头(包括套管将军帽);  13按有关规程规定进行测量和试验。  3临时检修项目  可视具体情况确定。  4对于老、旧变压器的大修,建议可参照下列项目进行改进  1油箱机械强度的加强;  2器身内部接地装置改为引并接地;  3安全气道改为压力释放阀;  4高速油泵改为低速油泵;  5油位计的改进;  6储油柜加装密封装置;  7气体继电器加装波纹管接头。  4检修前的准备工作  1查阅档案了解变压器的运行状况  1运行中所发现的缺陷和异常(事故)情况,出口短路的次数和情况;  2负载、温度和附属装置的运行情况;  3查阅上次大修总结报告和技术档案;  4查阅试验记录(包括油的化验和色谱分析),了解绝缘状况;  5检查渗漏油部位并作出标记;  6进行大修前的试验,确定附加检修项目。  2编制大修工程技术、组织措施计划  其主要内容如下:  1人员组织及分工;  2施工项目及进度表;  3特殊项目的施工方案;  4确保施工安全、质量的技术措施和现场防火措施;  5主要施工工具、设备明细表,主要材料明细表;  6绘制必要的施工图。  3施工场地要求  1变压器的检修工作,如条件许可,应尽量安排在发电厂或变电所的检修间内进行;  2施工现场无检修间时,亦可在现场进行变压器的检修工作,但需作好防雨、防潮、防尘和消防措施,同时应注意与带电设备保持安全距离,准备充足的施工电源及照明,安排好储油容量、大型机具、拆卸附件的放置地点和消防器材的合理布置等。  5变压器的解体检修与组装  1解体检修  1办理工作票、停电,拆除变压器的外部电气连接引线和二次接线,进行检修前的检查和试验。  2部分排油后拆卸套管、升高座、储油柜、冷却器、气体继电器、净油器、压力释放阀(或安全气道)、联管、温度计等附属装置,并分别进行校验和检修,在储油柜放油时应检查油位计指示是否正确。  3排出全部油并进行处理。  4拆除无励磁分接开关操作杆;各类有载分接开关的拆卸方法参见《有载分接开关运行维修导则》;拆卸中腰法兰或大盖宫接螺栓后吊钟罩(或器身)。  5检查器身状况,进行各部件的紧固并测试绝缘。  6更换密封胶垫、检修全部阀门,清洗、检修铁芯、绕组及油箱。  2组装  1装回钟罩(或器身)紧固螺栓后按规定注油。  2适量排油后安装套管,并装好内部引线,进行二次注油。  3安装冷却器等附属装置。  4整体密封试验。  5注油至规定定的油位线。  6大修后进行电气和油的试验。  3解体检修和组装时的注意事项。  1拆卸的螺栓等零件应清洗干净分类妥善保管,如有损坏应检修或更换。  2拆卸时,首先拆小型仪表和套管,后拆大型组件,组装时顺序相反。  3冷却器、压力释放阀(或安全气道)、净油器及储油柜等中件拆下后,应用盖板密封、对带有电流互感器的升高座应注入合格的变压器油(或采取其它防潮密封施)。  4套管、油位计、温度计等易损部件拆下后应妥善保管,防止损坏和受潮;电容式套管应垂直放置。  5组装后要检查冷却器、净油器和气体继电器阀门,按照规定开启或关闭。  6对套管升高座、上部管道孔盖、冷却器和净油器等上部的放气孔应进行多次排气,直至排尽为止,并重新密封好擦净油迹。  7拆卸无盛磁分接开关操作杆时,应记录分接开关的位置,并作好标记;拆卸有载分接开关时,分接头应置于中间位置(或按制造厂的规定执行)。  8组装后的变压器各零部件应完整无损。  9认真做好现场记录工作。  4检修中的起重和搬运  1起重工作及注意事项  1起重 荼应分工明确,专人指挥,并有统一信号;  2根据变压器钟罩(或器身)的重要选择起重工具,包括起重机、钢丝绳、吊环、U型挂环、千斤顶、枕木等;  3起重前应先拆除影响起重工作的各种连接;  4如系吊器身,应先紧固器身有关螺栓;  5起吊变压器整体或钟罩(器身)时,钢丝绳应分别挂在专用起吊装置上,遇棱角处应放置衬垫;起吊100mm左右时应停留检查悬挂及捆绑情况,确认可靠后再继续起吊;  6起吊时钢丝绳的夹角不应大于60°,否则应采用专用吊具或调整钢丝绳套;  7起吊或落回钟罩(或器身)时,四角应系缆绳,由专人扶持,使其保持平稳;  8起吊或降落速度应均匀,掌握好重心,防止倾斜;  9起吊或落回钟罩(或器身)时,应使高、低压侧引线,分接开关支架与箱壁间保持一定的间隙,防止碰伤器身;  10当钟罩(或器身)因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施;  11吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止倾倒损坏瓷件;  12采用汽车吊起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与临近带电设备的安全距离,并设专人监护。  2搬运工作及注意事项  1了解道路及沿途路基、桥梁、涵洞、地道等的结构及承重载荷情况,必要时予以加固,通过重要的铁路道口,应事先与当地铁路部门取得联系。  2了解沿途架空电力线路、通信线路和其它障碍物的高度,排除空中障碍,确保安全通过。  3变压器在厂(所)内搬运或较长距离搬运时,均应绑轧固定牢固,防止冲击震动、倾斜及碰坏零件;搬运倾斜角在长轴方向上不大于15°,在短轴方向上不大于10°;如用专用托板(木排)牵引搬运时,牵引速度不大于100m/h,如用变压器主体滚轮搬运时,牵引速度不大于200m/h(或按制造厂说明书的规定)。  4利用千斤顶升(或降)变压器时,应顶在油箱指定部位,以防变形;千斤顶应垂直放置;在千斤顶的顶部与油箱接触处应垫以木板防止滑倒。  5在使用千斤顶升(或降)变压器时,应随升(或降)随垫木方和木板,防止千斤顶失灵突然降落倾倒;如在变压器两侧使用千斤顶时,不能两侧同时升(或降),应分别轮流工作,注意变压器两侧高度差不能太大,以防止变压器倾斜;荷重下的千斤顶不得长期负重,并应自始至终有专人照料。  6变压器利用滚杠搬运时,牵引的着力点应放在变压器的重心以下,变压器底部应放置专用托板。为增加搬运时的稳固性,专用托板的长度应超过变压器的长度,两端应制成楔形,以便于放置滚框;运搬大型变压器时,专用托板的下中应加设钢带保护,以增强其坚固性。  7采用专用托板、滚框搬运、装卸变压器时,通道要填平,枕木要交错放置;为便于滚杠的滚动,枕木的搭接处应沿变压器的前进方向,由一个接头稍高的枕木过渡到稍低的枕木上,变压器拐弯时,要利用滚框调整角度,防止滚杠弹出伤人。  8为保持枕木的平整,枕木的底部可适当加垫厚薄不同的木板。  9采用滑全国纪录组牵引变压器时,工作人员和需站在适当位置,防止钢丝绳松扣或拉断伤人。  10变压器在搬运和装卸前,应核对高、低压侧方向,避免安装就位时调换方向。  11充氮搬运的变压器,应装有压力监视表计和补氮瓶,确保变压器在搬运途中始终保持正压,氮气压力应保持01~03MPa,露点应在-35℃以下,并派专人监护押运,氮气纯度要求不低于99%。  (2005-06-25)  整体组装  1整体组装前的准备工作和要求  1组装前应彻底清理冷却器(散热器),储油柜,压力释放阀(安全气道),油管,升高座,套管及所有组、部件。用合格的变压器油冲洗与油直接接触的组、部件。  2所附属的油、水管路必须进行彻底的清理,管内不得有焊渣等杂物,并作好检查记录。  3油管路内不许加装金属网,以避免金属网冲入油箱内,一般采用尼龙网。  4安装上节油箱前,必须将油箱内部、器身和箱底内的异物、污物清理干净。  5有安装标志的零、部件,如气体继电器、分接开关、高压、中压套管或高座及压力释放阀(或安全气道)升高座等与油箱的相对位置和角度需按照安装标志组装。  6准备好全套密封胶垫和密封胶。  7准备好合格的变压器油。  8将注油设备、抽真空设备及管路清扫干净;新使用的油管亦应先冲洗干净,以去除油管内的脱模剂。  2组装  1装回钟罩(或器身);  2安装组件时,应按制造厂的“发装使用说明书”规定进行;  3油箱顶部若有定位件,应按并形尺寸图及技术要求进行定位和密封;  4制造时无升高坡度的变压器,在基础上应使储油柜的气体继电器侧具有规定的升高坡度;  5变压器引线的根部不得受拉、扭及弯曲;  6对于高压引线,所包扎的绝缘锥部分必须进入套管的均压球内,防止扭曲;  7在装套管前必须检查无盛磁分接开关连杆是否已插入分接开关的拨叉内,调整至所需的分接位置上;  8各温度计座内应注以变压器油;  9按照变压器外形尺寸图(装配图)组装已拆卸的各组、部件,其中储油柜、吸湿器和压力释放阀(安全气道)可暂不装,联结法兰用盖板密封好;安装要求和注意事项按各组部件“安装使用说明书”进行。  3排油和注油  1排油和注油的一般规定  1检查清扫油罐、油桶、管路、滤油机、油泵等,应保持清洁干燥,无灰尘杂质和水分。  2排油时,必须将变压器和油罐的放气孔打开,放气孔宜接入干燥空气装置,以防潮气侵入。  3储油柜内油不需放出时,可将储油柜下面的阀门关闭。将油箱内的变压器油全部放出。  4有载调压变压器的有载分接开关油室内的油应分开抽出。  5强油水冷变压器,在注油前应将水冷却器上的差压继电器和净油器管路上的塞子关闭。  6可利用本体箱盖阀门或气体继电器联管处阀让安装抽空管,有载分接开关与本体应安连通管,以便与本体等压,同时抽空注油,注油后应予拆除恢复正常。  7向变压器油箱内注油时,应经压力式滤油机(220kV变压器宜用真空滤油机)。  图1真空注油连接示意图  1-油罐;2,4,9,10-阀门;3-压力滤油机或真空滤油机;5-变压器;6-真空计;7-逆止阀;8-真空泵  2真空注油  220kV变压器必须进行真空注油,其它奕坟器有条件时也应采用直空注油,真空注油应遵守制造厂规定,或按下述方法进行,其连接图见图1。  通过试抽真空检查油箱的强度,一般局部弹性变形不应超过箱壁厚度的2倍,并检查真空系统的严密性。  操作方法:  1以均匀的速度抽真空,达到指定真空度并保持2h后,开始向变压器油箱内注油(一般抽空时间=1/3~1/2暴露空气时间),注油温度宜略高于器身温度;  2以3~5t/h的速度将油注入变压器距箱顶约200mm时停止,并继续抽夫空保持4h以上;  3变压器补油:变压器经真空注油后补油时,需经储油柜注油管注入,严禁以下部油门注入,注油时应使油流缓慢注入变压器至规定的油面为止,再静止12h。  3胶囊式储油柜的补油  1进行胶囊排气:打开储油柜上部排气孔,由注油管将油注满储油柜,直至排气孔出油,再关闭注油管和排气孔;  2从变压器下部油门排油,此时空气经吸湿器自然进入储油柜胶囊内部,至油位计指示正常油位为止。  4隔膜式储油柜的补油  1注油前应首先将磁力油位计调整至零位,然后打开隔膜上的放气塞,将隔膜内的气体排除再关闭放气塞;  2由注油管向隔膜内注油达到比指定油位稍高,再次打开放气塞充分排除隔膜内的气体,直到向外溢油为止,经反复调整达到指定油位;  3发现储油柜下部集气盒油标指示有空气时,应用排气阀进行排气;  4正常油位低时的补油,利用集气盒下部的注油管接至滤油机,向储油柜内注油,注油过中发现集气盒中有空气时应停止注油,打开排气管的阀门向外排气,如此反复进行,直至储油柜油位达到要求为止。  5油位计带有小胶带时储油柜的注油  1变压器大修后储油柜未加油前,先对油位计加油,此时需将油表呼吸塞及小胶囊室的塞子打开,用漏斗从油表呼吸塞座处徐徐加油,同时用手按动小胶带,以便将囊中空气全部排出;  2打开油表放油螺栓,放出油表内多余油量(看到油有内油位即可),然后关上小胶囊室的塞子,注意油表呼吸塞不必拧得太紧,以保证油表内空气自由呼吸。  4整体密封试验  变压器安装完毕后,应进行整体密封性能的检查,具体规定如下:  1静油柱压力法:220kV变压器油柱高度3m,加压时间24h;35~110kV变压器油柱高度2m,加压时间24h;油柱高度从拱顶(或箱盖)算起。  2充油加压法:加油压035MPa时间12h,应无渗漏和损伤。  5变压器油处理  1一般要求  1大修后注入变压器内的变压器油,其质量应符合GB7665-87规定;  2注油后,应从变压器底部放油阀(塞)采取油样进行化验与色谱分析;  3根据地区最低温度,可以选用不同牌号的变压器油;  4注入套管内的变压器油亦应符合GB7665-87规定;  5补充不同牌号的变压器油时,应先做混油试验,合格后方可使用。  2压力滤油  1采用压力式滤油机过滤油中的水分和杂质;为提高滤油速度和质量,可将油加温至50~60℃。  2滤油机使用前应先检查电源情况,滤油机及滤网是否清洁,极板内是否装有经干燥的滤油纸,转动方向是否正确,外壳有无接地,压力表指示是否正确。  3启动员滤油机应先开出油阀门,后开进油阀门,停止时操作顺序相反;当装有加热器时,应先启动滤油机,当油流通过后,再投入加热器,停止时操作顺序相反。 滤油机压力一般为25~4MPa,最大不超过5MPa

电气方面论文英文免费下载

251 评论(11)

猎户轻旋

1 距离保护(ZM1-5)1 情况 概述距离保护装置是在输电网和变电网中应用得最广泛的一种保护装置。在配电网中它也变得越来越重要。主要原因如下:*它在线路两端之间的通信通道中的独立性,是因为它是利用本地有效电流和电压信息动作的。*距离保护在电力网中形成了一个相互关联的有选择性的保护系统(非单元式的保护系统)。这意味着它也可以作为网络中其他主要元件的远后备保护。现代线路保护的基本要求,比如快速性,灵敏性和选择性,以及在可靠性和安全性方面的严格要求,变得越来越严格。另外,现代距离保护在网络中必须能够与阻抗继电器配合动作,这是一种由不同技术设计而成的继电器(静态或者是机电式继电器)。较早的阻抗继电器在多数情况下只用于电力线路的相间和三相故障的保护,一些其他保护用于接地故障中。由于这些原因现代距离保护的灵活性非常重要,当它用于一个复杂的网络结构时尤其合适。比如并列运行的多回线路和辐射网。距离保护的有选择性动作不是依靠线路两端间的通信设备。距离保护能在远方末端电流互感器处检测到故障。这个功能使它成为那些不能检测到超过反方向末端电流互感器范围以外故障的线路差动保护的一个理想补偿。距离保护范围在线路REX 5XX的保护、控制和终端监测方面的距离保护装置由3到5个独立的距离保护范围组成,每一个包括了3个接地故障的测量元件和3个相间故障的测量元件。对于各种不同电压等级在不同的电网中,不同的终端要适合不同的要求。由于这个原因,距离保护装置的一些特征参数各终端之间是不同的(要了解详细内容,请查阅线路保护终端的分类细节)。距离保护区域5不同于其他段在于它动作的快速性。它比其他距离保护段启动快,而且在不同的系统暂态过程中,由于这个原因误动的可能性就更高了,因此它只适用于以下情况:允许更高越限或者作为具有超过100ms延时的延时距离保护段。线路差动保护的补充在一些线路差动保护终端设备中(如REL 561)距离保护装置能够成为一个有选择性的保护。同时它是超出反方向末端电流互感器以外故障时的主保护,这个功能由带延时段实现(如II段),它覆盖了所有相邻母线,因此形成了母线的主保护或后备保护。所以超越段应处于持续动作状态。保护范围为部分线路的保护段(如I段)可以作为线路差动保护的后备。只要差动保护动作这个功能就不需要了。为了减小I段误动的风险,可以在差动保护拒动时将其投入,差动保护失灵的最大原因就是通信系统故障。由于这个原因用于距离保护的通信方案应该使用另一个通信途径而舍弃用于线路差动保护的那一个方案。简单参数的整定每一距离保护段基本上包含了作为相对地、相间测量的完全独立的整定参数。这是复杂网络结构中和那些被要求使新配置的距离保护装置适应目前其他类型继电器的网络的一个优势情况。一套简明的可选择参数适用于反映各种类型故障的相同最大保护范围是一个标准惯例的场合。参看整定参数和整定操作说明表格。基本特性作为合成到线路REX 5XX保护终端的距离保护装置是一个全方案的距离保护。这意味着在不同范围内对于各种类型故障它都有单独的测量元件。根据终端类型,它至少由5个独立的阻抗测量范围(详情参看通信规则详文)组成,每一个都是四边形特性,示例插图如图38。RL和XL代表线路电阻和电抗,RF代表保护范围的电阻最大值。A2 Line impedanceAbout this chapterThis chapter describes the line impedance functions in the 1 Distance protection (ZM1-5)1 ApplicationGeneralThe distance protection function is the most widely spread protection function in transmission and subtransmission It is also becoming increasingly important indistribution The main reasons for this are:• Its independence on communication links between the line ends, because for its operation,it uses information about the locally available currents and • The distance protection forms a relatively selective protection system (non-unit protectionsystem) in the power This means that it can also operate as a remoteback-up protection for other primary elements in the The basic requirements for modern line protection, such as speed, sensitivity and selectivity, with their strict requirements for dependability and security (availability), aregetting more In addition, modern distance protections must be able to operate in networks with existing distance relays, which are mostly designed in a different technology (static or even electromechanical relays)Older distance relays protect in many cases power lines only at phase-to-phase and three-phase Some other protection is used for phase-to-earth The flexibility of modern distance protection is for this reason very This especially applies when it is used in a complex network configuration, for example, on parallel operating multicircuit lines and on multiterminal The selective operation of the distance protection does not depend on communication facilities between two line At the same time, the distance protection can detect faults beyond the current transformers at the remote This functionality makes it an ideal complement to the line differential protection function that cannot detect faults beyond the current transformer at the opposite Distance protection zonesThe distance protection function in REx 5xx line protection, control, and monitoring terminals consists of three to five independent distance protection zones, each of them comprising three measuring elements for phase-to-earth (Ph-E) faults and/or three measuring elements for phase-to-phase (Ph-PH) Different terminals suit different requirements in different networks on various voltage For this reason, some characteristic parameters of the distance protection function differ from terminal to For detailed information, please refer to ordering particulars for each line protection terminal REx 5xx Distance protection zone five differs from other zones with respect to its speed of It starts faster than other distance protection zones and might have for this reason higher overreaching for different system It is for this reason suggested to use it only for the applications, which permit higher overreaching, ( switch-onto-fault function) or as a time delayed distance protection zone with time delay longer than 100 Complement to the line differential protectionThe distance protection function can become optional protection in some line differential protection terminals (REL 561, for example) At the same time it represents the primary protection for faults beyond the current transformers at the opposite This functionality is achieved by the time delayed overreaching zone (generally zone 2), which covers at least the adjacent busbar and thus forms a primary or back-up protectionfor the So the overreaching zone should be continuously in An underreaching zone (generally zone 1) can form a back-up to the line differential There is no need for this function as long as the differential protection is in To minimize the risk of unwanted operation from zone 1, this function can be activated only when the differential function is out of The most likelycause to lose the differential protection is a failure within the communication The communication scheme used with the distance protection should for this reason use another communication channel than the one used by the line differential Set of simplified setting parametersEach distance protection zone comprises basically completely independent setting parameters for phase-to-earth, and for phase-to-phase This is an application advantage in complex network configurations and in networks, where it is required to adjust the newly applied distance protection functions to the existing other types of relays (overcurrent earth fault, for example)A set of simplified optional parameters is available optionally for applications, where equal zone reaches for all kinds of faults are a standard See the table of setting parameters and the setting Line impedanceBasic characteristicsThe distance protection function, as built into the REx 5xx line protection terminals, is a full-scheme distance This means that it has individual measuring elements for different types of faults within different Depending on the type of terminal, it consists of up to five (for details see the corresponding ordering details) independent, impedance-measuring zones, each has a quadrilateral characteristic, as symbolically illustrated in figure RL and XL represent line resistance and reactance and RF represents the resistive reach of a protective
107 评论(15)

相关问答