期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    287

randoudou
首页 > 期刊问答网 > 期刊问答 > 大学数学毕业论文范文大全

2个回答 默认排序1
  • 默认排序
  • 按时间排序

远方的路|

已采纳
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008

大学数学毕业论文范文大全

351 评论(9)

mkjetaime

我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
83 评论(14)

相关问答