期刊问答网 论文发表 期刊发表 期刊问答

电子设计论文液晶显示

  • 回答数

    5

  • 浏览数

    269

钥惩孛397
首页 > 期刊问答网 > 期刊问答 > 电子设计论文液晶显示

5个回答 默认排序1
  • 默认排序
  • 按时间排序

cxccan

已采纳
你好!是仿真还是做实物,需要了解情况,才能完成

电子设计论文液晶显示

88 评论(11)

lyjlyj517

去爱问搜一下,比谁说的都全都准,我也是写论文的
183 评论(12)

海-纳百川

摘要:本设计采用 ………作为直流恒流源的控制、显示和输出电流检测核心,实现了。系统的显示部分采用128×64点阵式液晶显示屏实时显示设定电流值和实测电流值;输出电流控制………;电流测量采用基本没有温度漂移的康锰铜电阻丝作为精密取样电阻,……… A/D输入口进行电流检测和监控。电源部分采用大功率变压器供电,多级电容滤除纹波干扰;电源输出采用分离元件实现稳压,并且利用稳压管和LM358运放进行稳压和过流保护,以满足后级功率需求。关键字:电源、一、 方案论证如题目要求,系统主要由控制器模块、电源模块、电流源模块、负载模块及键盘显示模块构成,下面分别论证这几个模块的选择。1、 控制模块的选择方案 方案一:采用AT89C51单片机进行控制。本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。采用AT89C51进行控制比较简单,但是51单片机资源有限,控制输入输出,需要外接8279之类的芯片进行I/O扩展。 方案二:采用…………单片机进行控制。…………单片机具有……。经综合考虑和分析,本设计采用方案二更能满足设计要求。2、 电源模块的选择方案由于该题要求输出……方案一:采用三端稳压集成电路 一般的三端稳压集成块稳压效果较好,但难以达到2A以上的大电流输出,为了满足本题需要可以采用多块稳压集成块并联的方式来扩流。这种电路理论上输出电流能力为各块集成块输出最大电流的和。要达到比较好的稳压效果,要求并联的各稳压块参数尽量接近。在应用中发现,当电流接近理论值时,稳压效果急剧变差,这是由于器件的不一致性所造成的。因此,要取得好的稳压效果,理论输出最大电流值要大于所需电流值,这必然造成器件的浪费,且器件的选择还必须参数尽量接近。方案二:采用全桥整流加电容滤波电路该电路广泛应用于一些要求不太高的电流直流电源中,其驱动能力和后级的滤波电容有关,该电路显著的特点就是能够比较好的满足电流的瞬态相应,而如果负载要求持续的大电流输出,该电路将无能为力。方案三:采用三端稳压集成电路外接扩流管这种电路既利用了稳压集成块优秀的稳压性能,又能够有一定的电流输出,在一些高精度的线性稳压电源中被广泛采用,其基本电路图如图1所示。采用三端稳压集成电路LM7812驱动达林顿管TIP127,该管最大集电极电流为8A,仿真时当电流为3A左右时,纹波电压仅为几十uV,有着非常优异的性能。  经综合考虑和分析,本设计采用方案……更能满足设计要求。 3、电流源模块的选择方案方案一:由晶体管构成镜像恒流源  该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。另一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路  运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。方案三:由运算放大器加上扩流管构成恒流电路  采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。  鉴于上面分析,本设计采用方案三。4、显示模块的选择方案方案一:采用LED数码管显示。由于要求显示设定值和测量值,需要显示的值比较多。采用LED数码管需要用动态扫描,占用资源比较多。整个显示界面显得不太友好。方案二:采用LCD液晶显示器显示。采用128×64点阵LCD液晶显示,可视面积大,画面效果好,抗干扰能力强,调用方便简单,而且可以节省了软件中断资源。其缺点在于显示内容需要存储字模信息,需要一定存储空间。由于作为控制器的单片机SPCE061A有32K字的Flash,有足够的存储空间,存储字模数据绰绰有余。……………………………二、 硬件设计根据题目要求和以上论证,本设计的系统框图如图………所示,主控制器与各外围模块的硬件连接图如图……………所示。 系统的硬件部分主要包括三大部分:恒流源电路、电流测量电路和单片机控制电路。 (1)电源电路的硬件设计 在本系统中,要求输出2A的大电流,而且对纹波的要求很高,电源部分的电路图如图3所示。50Hz交流220V电压经过变压器,输出约±20V交流电压,经过全桥进行整流,通过电容滤波,100nF、0uF用于滤除电源中的高频交流成分。采用三端稳压集成电路LM7812驱动达林顿管TIP127,使电源输出电流能达到2A以上,以满足电流源的需要。 图 3 电源部分电路  利用Multisim 8对图1电源电路进行仿真。当正负两路电源输出负载为5Ω时,分别用虚拟万用表测量正负两路电源的输出电压(即图3的节点11和节点6),以及通过负载的电流,得到结果如4所示。正端电源输出电压为84V,流经负载电流为368A;负端电源输出电压为-869V,流经负载电流为374A。正负两路输出功率均能达到20W,满足电流源最大电流2A,最高电压10V的输出功率要求。 图 4 正负电源负载端电压电流仿真结果(2)数控电路的设计 (5)键盘电路的设计  在本系统中,键盘主要用于设定电流源的输出电流值。为了操作更方便,采用了1×8按键,连接到SPCE061A单片机IOA的高8位,采用直接检测电平的方法检测按键。其中使用了5个按键,按键面板如图8所示。设定键用于正常状态和设定状态之间的切换。左右键用于设定状态下,设定位置的选择;上下键用于改变设定位的值。调节范围为0~2A,步进1mA。 图8 键盘面板图  (6)显示电路的设计  本系统采用128×64 LCD液晶点阵显示。8位数据线分别连接到SPCE061A的IOB高8位,并且利用IOB3~IOB7作为控制线。正常状态下显示面板图如图9所示。  当设定电流和负载电阻的配合使负载两端电压值超过题目要求的10V最大电压时,将会输出警告信息,此时显示面板输出图如图10所示。    图9 正常状态下显示面板图         图 10 报警状态下显示面板图三、 软件设计1)主程序流程图  软件的主程序流程如图11所示。主程序不断检测是否有按键输入,如果有按键,则进行相应的键值处理,根据按键改变设定的电流值,实现数控输入。再根据设定值,对应改变显示内容和DAC输出的控制电压。当设定电流值为正的时候,通过………的I/O口控制两个模拟开关的导通与截止。四、 电路测试五、 结论本系统以凌阳十六位单片机………芯片为核心控制器件,控制液晶显示,键盘输入,恒流输出设定和电流输出检测等各个部分。数控恒流源可以在输出口电压不超过10伏的情况下输出-2A到2A的恒定电流,具有输出准确,纹波少,输出稳定等特点,基本达到了竞赛题目中要求的各项任务和功能。在系统设计过程中,功率器件和控制器件隔离布线,对大功率器件进行了较好的散热处理。因为时间有限,该系统还有很多值得改进的地方:电源部分加入过载自动保护电路,以防止负载过大时的系统过载;采用12位的AD和DA对恒流源电路进行更加精确的检测和控制,因为整体硬件电路经过测试可以将输出电流精确到1mA;增加监测点,当输出口电压大于10伏时进行报警;增加风扇或其他更好的散热设备和温度检测设备,当恒流源连续输出大电流系统过热时,对整个系统进行充分的散热,这样也可以使输出的最高电流2A向上提升到5A以上。六、 参考文献1、 王兆安、黄俊。电力电子技术【M】北京:机械工业出版社,5。2、 康华光主编。电子技术基础数字部分北京:高等教育出版社,3、 黄智伟主编。全国大学生电子设计竞赛训练教程北京:电子工业出版社,1
274 评论(10)

南波万

5342 ·基于51单片机的LED点阵显示屏系统的设计与实现 16×16点阵显示屏 简介:(字数:19635,页数:51) [电子机电类] 5060 ·基于89C51的点阵屏显示设计 简介:(字数:5241,页数:14 ) [电子机电类] 2907 ·LED点阵显示屏-软件设计 简介:(字数:20964,页数:37) [电子机电类] 2702 ·可编程的LED(16×64)点阵显示屏 简介:(字数:页数:38 ) [电子机电类] 2700 ·8×8LED点阵设计 简介:(字数:页数:25) [电子机电类] 2476 ·点阵式汉字电子显示屏的设计与制作 简介:(字数:11263,页数:43) [电子机电类] 2423 ·16×16点阵LED电子显示屏的设计 简介:(字数:17653,页数:41) [电子机电类] 659 ·点阵电子显示屏--毕业设计
351 评论(9)

lnmlz33

电子式多功能电能表的设计与实现 本文阐述了电子式多功能电能表的设计方法、硬件设计的技术关键和软件设计流程。并以NEC的uPD78F0338单片机为例,实现了一款具有四种费率、六条负荷曲线和两套费率结构的三相四线电子式多功能电能表 电子式多功能电能表主要针对国内市场三相用电的工业用户。随着电力行业改革深入,工业三相用电对多功能电能表的需求大量增加。目前国内多功能表种类少、价格较高、功能不完善,往往仅是针对某些地区的特定要求开发,缺乏通用性,某些产品未能完全达到国标的要求。本文介绍的电子式多功能电能表正是为了适应这种市场需求而设计的。 这是一款智能型高科技电能计量产品,该表可以同时计量正/反向有功电能、正/反向无功电能、四象限无功电能,还具有多费率控制,负荷曲线记录,各相失压、过压、频率超限记录,数据LCD显示等多种功能。主站可以通过RS-485总线或手持红外抄表器对该电表进行查表、设表、抄表等操作。 软件代码全部采用C/C++语言编写,编码效率高,可维护性好,便于实现模块化设计,可根据用户的需求方便地对功能模块进行裁剪。而且代码经过优化,其生成的目标代码大小和执行效率已与汇编代码相差无几。该产品的技术指标全面符合GB/T 17215-1998《1级和2级静止式交流有功电度表》、DL/T614-1997《多功能电能表》和DL/T645—1997《多功能电能表通信规约》的要求。 多功能电能表的总体结构和硬件设计 多功能表总体结构 电子式多功能电能表硬件的核心MCU主控制器,它负责按键输入扫描、工作状态检测,计量数据的读入、计算和存储、电表参数的现场配置以及与外界的通信控制等。其主要功能单元包括MCU主控制器单元、电量计量模块、红外和RS—485通信模块、校表模块、EEPROM存储阵列等;其他辅助模块主要有:时钟日历电路、工作异常报警电路、按键输入电路、复位和看门狗电路、开关电源模块和后备电池电路、大屏幕液晶显示模块和LED显示模块。多功能表总体结构框图如图1所示。 高性能主控制器单元 主控制器采用NEC公司8位单片机中的高档产品uPD78P0338。该款单片机为120脚QFP封装,单片集成有60KBFlash、一个异步通信串行口、40x4段LCD驱动器、高达10MHz的总线时钟和10路10位精度的ADC,并可通过简单的接口进行在系统编程,极大地方便在线调试和软件升级。并且支持高级语言,较好地满足了多功能表任务繁多、数据量庞大、算法较复杂的功能要求。 串口复用通信单元 通信电路模块主要包括TSOPl838红外接收头、红外发射二极管、载波电路、MAX487专用485收发电路、驱动/开关二极管和其他元件。 本电能表为便于用户抄表,设计有红外本地抄表和RS-485集中抄表两种串行抄表方式,因为uPD78F0338仅有一个串口,故通信电路设计时采用串口复用技术。由9012、9014和若干电阻等器件组成互补开关,由MCU的一个I/O口来控制红外和RS-485通信方式的切换,如图2所示。 高精度电量计量模块 计量模块由高精度专用电能计量芯片SA9904,电流互感器和其他外围电路元件组成。SA9904是Sames公司生产的一款三相双向功率/电能计量芯片,可以计量有功/无功功率、电压、频率、相序异常等,可以单独计量每一相的用电信息,符合IEC521/1036标准,可达到1级交流电能表的精度要求,各数据寄存器具有24位精度,可通过三线SPI接口与CPU交换数据。从而可以较好地适应多功能表需要计量多种电量数据的要求。SA9904引脚及其外围电路图如图3所示。 其中,CLK、DO、DI构成与MCU控制器的接口,用于传输控制命令和测得的电量数据,IIps、IIPt、IIPr用来对电流取样,IVPl、IVP2、IVP3用来对电压取样。 时钟日历模块 时钟电路采用EPSON生产的RTC-4553实时时钟芯片。内部集成了768kHz的石英晶体振荡器,简化外围电路,并可以根据需要进行自由设置以得到较高的频率;同时集成有时钟和日历计数器,可选择24或12小时显示模式,时钟可通过软件方式进行间隔30秒的调整,并提供1Hz或1024Hz的定时脉冲输出,以便于在电能表的外部对时钟精度进行定期检查。RTC-4553引脚及其外围电路图如图4所示。其中,SCK、Sin、Sout与主处理器接口,用于发送控制指令或者传输日期时间数据,本系统日历时钟模块采用电池作后备电源,以确保在停电状态下,日期时间的准确无误。 多功能电能表的软件设计 数据结构设计 多功能电能表涉及的数据类型种类繁多。按字节分包括单字节、双字节、三字节、四字节和六字节等,按表征的意义分有时间、时刻、电压、电流、有功功率、无功功率、有功电能、无功电能、次数、功率因数、门限、状态字、系数、表号等。复杂的数据类型对数据结构的设计提出了较高的要求,本实现方案通过采用多种数据寻址方式和多种类型存储器较好地解决了这一问题。 数据结构设计要点 系统的数据存放方式有:内部ROM、RAM和外挂EEPROM。 内部ROM用来存放大量的常数表格,RAM用于存放临时变量和堆栈,本方案需要5KB左右的RAM,串行EEPROM则存储各种用户电量数据和设表参数,通过12C总线与CPU交换数据,电能表按设计需求的最大要求大约需要250KB的EEPROM,本方案采用8片256位EEPROM通过级联来实现。 数据寻址方式 EEPROM数据访问采用两种方式;直接地址访问,通过数据的EEPROM地址直接读写数据;数据ID寻址,通过数据的编码读写数据。 通信口复用功能设计 红外通信和RS-485共用一个串行口(RxD/TxD)通信,由于串行口通信开始都有一低电平位(0),因此将红外接收端(与485接收端用一三极管隔开)引到一中断引脚INTP1,通过其引发的中断可判断串行口数据是否来自红外。发送时按时应方式发送,使其不互相干扰。由于红外通信和遥控接收用同一接收管,因此在判断红外来源的中断中启动定时器INTTM4检测红外接收端,如果检测到脉冲宽度为9ms或56ms,则判断为红外遥控,并根据定时检测遥控编码;否则判断为红外产生的串行口接收中断,并将定时检测关闭。 红外4kHz调制信号由CPU内部分频输出(P05/PCL)。f=fx/27=9152/128=4kHz。 因红外发送字节之间可选有15~20ms的延时,而485通信则不需要延时。数据发送在发送中断中进行,红外通信在发送操作后立即关闭发送中断允许,待延时时间到后再允许发送中断。 多功能表程序流程图 多功能表主程序流程主要包括初始化、数据校验、负荷曲线修补和事务处理等,其流程图如图5所示。 日常事务处理流程集中体现了多功能表的大部分主要功能,包括费率处理、计量数据采集及处理、自动抄表、电能脉冲输出、校表模块和掉电检测及处理模块等,其流程图如图6所示。
159 评论(9)

相关问答