期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    250

hanfei335
首页 > 期刊问答网 > 期刊问答 > 物联网技术论文2000字数多少个

4个回答 默认排序1
  • 默认排序
  • 按时间排序

lzlj

已采纳
那你可以去看下、计算机科学前沿、找下这类的文献参考

物联网技术论文2000字数多少个

317 评论(10)

mzshqwt916

关于网络联网的论文。物联网大概就是物流的互联网。
148 评论(11)

fantian

科技创新论文和智能计算论文 :计算智能原理对创新模式的探索 摘要:科技创新能力培养是本科生培养的一个重要方面,在国家大力提倡科技创新的背景下,加强大学生科技创新具有重要的意义。培养有创新能力的人才是高等学校建设的中心。本文基于计算智能原理与方法,结合指导的国家大学生创新项目的实践,就建设高效的创新团队的方法进行了初 探。 关键词:计算智能;科研训练;创新团队 0引言 目前,我们要提高自主创新能力,建设创新型国家。高等教育担负着培养创新型人才的重要责任。学生科技活动对于提高学生科技创新能力,培养拔尖创新型人才具有重要意义。而构建了一批锐意进取、大胆创新的大学生创新团队,对提高学生的创新能力和团队协作能力就显得特别的重要。目前就团队理论的研究还有待与深入,用计算智能的基本理论原理与方法来指导建设大学生创新项目团队,是一种跨学科研 究的新尝试。 1计算智能的基本理论与方法简介 计算智能由美国学者James CBezedek1992年首次给出其定义,广义的讲就是借鉴仿生学思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等某些机制,用数学语言抽象描述的计算方法。是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。计算智能的主要方法有:人工神经 网络、模糊系统、进化计算等。 1模糊计算 模糊系统以模糊集合理论、模糊逻辑推理为基础,它试图从一个较高的层次模拟人脑表示和求解不精确知识的能力。在模糊系统中,知识是以规则的形式存储的,它采用一组模糊IF—THEN规则来描述对象的特性,并通过模糊逻辑推理来完成对不确定性问题的求解。模糊系统善于描述利用学科领 域的知识,具有较强的推理能力。 2人工神经网络 人工神经网络系统是由大量简单的处理单元,即神经元广泛地连接而形成的复杂网络系统。在人工神经网络中,计算是通过数据在网络中的流动来完成的。在数据的流动过程中,每个神经元从与其连接的神经元处接收输入数据流,对其进行处理以后,再将结果以输出数据流的形式传送到与其连接的其它神经元中去。网络的拓扑结构和各神经元之间的连接权值(Wi)是由相应的学习算法来确定的。算法不断地调整网络的结构和神经元之间的连接权值,一直到神经网络产生所需要的输出为止。通过这个学习过程,人工神经网络可以不断地从环境中自动地获取知识,并将这些知识以网络结构和连接权值的形式存储于网络之中。人工神经网络具有良好的自学习、自适应和自组织能力,以及人规模并行、分布式信息存储和处理等特点,这使得它非常适合于处理那些需要同时考虑多个因素的、不完整的、不准确的信息处理问题。 3进化计算 自然界在几十亿年的进化过程中,生物体己经形成了一种优化自身结构的内在机制,它们能够不断地从环境中学习,以适应不断变化的环境。对于大多数生物体,这个过程是通过自然选择和有性生殖来完成的。自然选择决定了群体中哪些个体能够存活并繁殖:有性生殖保证了后代基因的混合与重组。进化计算受这种自然界进化过程的启发,它从模拟自然界的生物进化过程入手,从基因的层次探寻人类某些智能行为发展和进化的规律,以解决智能系统如何从环境中进行学 习的问题。 2计算智能原理在创新团队实践中的启发 从系统论的视角看,创新团队的建设问题是一个复杂系统的优化和控制问题。复杂系统具有:1)自适应性/自组织性(self-adaptive/self-organization)。2)不确定性(uncertainty)。3)涌现性(emergence)。4)预决性(Finality)。5)演化(Evolution)。6)开放性(opening)。而计算智能的这些方法具有自学习、自组织、自适应的特征,创新团队的建设是具 有一定的研究价值的。 1在专家指导下的自学习、自组织、自适应计算 智能特点提到,模糊系统善于描述和利用经验知识;神经网络善于直接从数据中进行学习,把人工神经网络与专家系统结合起来,建立一个混合的系统,要比各自单一地工作更为有利。创新团队在相关专家的指导下,突出学生自由组建、自主管理、自我服务的特色。在明确团队任务的前提下对团队人数、组成人员条件及内部控制制度做些原则性的规定,赋予团队负责人充分的权力如决定团队成员构成、支配内部经费、对团队成员进行分工和考核等,保证其对团队工作直接 有效的管理。 2合作与竞争意识 计算智能特点提到,进化计算善于求解复杂的全局最优问题,具有极强的稳健性和整体优化性。种群的进化过程就是优胜劣汰的自然选择过程。团队建设的基石是合作与竞争理论。Deutsch早就指出,如果人们处于散乱的、互不相干的独立竞争关系,认为双方目标之间没有关系,那么,在资源有限的情况下,人们会表现得更为自私,彼此之间的利益存在冲突,这种关系会引起组织内耗和人际关系紧张,最终导致低生产率和低创造率。Dcutsch认为,应该使人们在组织中具有共同目标,在共同目标下合作共事。具有合作关系的人们会相互尊重、共享信息和资源,他们会将他人的进步看成对自己的促进,并交流意见和取长补短,现代科学的进步表明,今天每一项科技成果的取得,差不多都是多学科协同作战的结果。大学科研团队的建设就是要很好地贯彻这种理 念,在适度的竞争与合作之间构建这种理念。 3融入计算智能思想的协同学习 团队人们在研究人类智能行为中发现,大部分人类活动都涉及多个人构成的社会团体,大型复杂问题的求解需要多人或组织协作完成,师生之间的关系也更强调合作和共同发展。随着计算机网络、计算机通信和并发程序设计的发展,分布式人工智能逐渐成为人工智能领域的一个新的研究热点,它是以智能Agent概念为研究核心。虽然每个智能Agent都是主动地、自治地工作,多个智能Agent在同一环境中协同工作,协同的手段是相互通信。计算智能与分布式人工智能结合则是研究在逻辑上或物理上分散的智能动作如何协调它们的知识、技能和规划,求解单目标或多目标问题,因此这也为设计和建立大型复杂的智能系统或计算机支持的协同学习 工作提供了有效途径。 4选好综合能力强的团队带头人 计算智能特点提到,对复杂系统的控制,要用处理各种不确定的智能方法,这就要求团队带头人有处理复杂问题的综合能力。科技创新团队应是由不同类型的人为实现特定的目标组成的群体。激励和聚合大家的力量,负责内部的计划、组织、指挥、协调和控制等方面组织工作,必须要有一位核心人物,即学术带头人。优秀的学术带头人是高校科技创新团队必备的要素。团队的带头人处于沟通、协调团队内外的中心位置,是团队其他成员获得工作方向、具体任务、工作目标等信息的主要来源,是团队维持士气、活力、凝聚力的中心环节和纽带,在很大程度上决定了整个团队的学术水平、科研风格和文化氛围。同时对团队整体加强协调与组织,提 高团队的内部凝聚力。 5加强交流,资源公享计算 智能特点提到自适应,进化机制,是建立在信息传输基础上的。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中的每个成员都为组织的发展倾尽所有。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中 的每个成员都为组织的发展倾尽所有。 6配备优势互补的成员 在计算智能机制的调控,非线性复杂系统有涌现性特征。所谓涌现性,就是肩负不同角色的组件间通过多种交互模式、按局部或全局的行为规则进行交互,组件类型与状态、组件之间的交互以及系统行为随时间不断改变,系统中子系统或基本单元之间的局部交互,经过一定的时间之后在整体上演化出一些独特的、新的性质,形成某些模式,这便体现为涌现性。子系统之间的相互作用,可导致产生与单个子系统行为显著不同的宏观整体性质。涌现性也体现为一种质变,主体之间的相互作用开始后,系统能自组织、自协调、自加强, 并随之扩大,发展,最后发生质变,即发生了涌现。 3结束语 计算智能理论对处理复杂系统的优化和控制问题是有效,计算智能原理在创新团队实践中的启发是多方面的。目前就团队理论的研究还有待与深入,利用计算智能原理与方法来指 导建设大学生创新项目团队,是一种新的思路。 参考文献: [1]王海鹰基于多智能体协同进化机制的学术团队建设中国 校外教育2010, [2]Wang HCooperative agent-based evolutionary mechanism of the management team of Enterprise innovation[C2010 IEEE International Conference on AdvanceManagement Science(IEEE ICAMS 2010)2010- [3]李慧波团队精神新华出版社
329 评论(15)

chenxuliang

摘要:物联网作为一种新的网络形式,相关理论研究和实践应用正在探索过程中。本文介绍了物联网的概念,给出了基于智能物体层、数据传输层、信息关联层、应用服务层的物联网四层体系架构,最后探讨了物联网在实现过程中所面临的问题和挑战。关键词:物联网,RFID一、概念物联网(Internet of Things)这个概念最早由麻省理工的Auto-ID中心在1999年提出,其基本想法是将RFID和其他传感器相互连接,形成RFID架构的分布式网络。欧洲委员会[1]提出“物联网是未来因特网的综合部分之一,可以被定义为一个动态的全球网络基础。基于标准的和互操作的通信协议,无论物理的还是虚拟的“物”均有身份、物理属性和虚拟特质,具备自配置能力且使用智能接口,可以无缝地集成到信息网络中去。”本文认为,物联网实质上是将真实世界映射到虚拟世界的过程:真实世界中的事物,通过传感器采集一定的数据,在虚拟世界中形成与之对应的事物。“相关物体可能在虚拟电子空间中被创造出来,源于物理物体空间,且与物理空间的物体有关联。”[2]传感器采集到数据的详细程度,将影响到该事物在虚拟世界中的抽象程度。在虚拟世界中,对该事物最简单也最重要的描述是物体提供了一个ID用于识别(如使用RFID标签),最详细的描述则是真实世界中该事物的所有属性和状态均可在虚拟世界中被观察到。进一步的,在虚拟世界中对该物体做出控制,则可通过物联网改变真实世界中该物体的状态。对于一个真实的事物,其所需的各种应用与操作,只需在虚拟世界中对与之对应的虚拟事物进行应用和操作,即达到目的。这样将会对世界带来巨大的改变:实地实时监测和控制一个事物的成本是高昂的,通过物联网,所有事物都将在虚拟世界中被找到,以较低的成本被监测和控制,从而实现4A(anytime, any place, anyone, anything)[3]连接。虚拟世界提供了对所有事物的实时追踪的可能,所有的信息都不是孤立的,这将为各种海量运算和分析提供了最基础和最重要的信息源。真实世界存在于某一时刻,而当物联网发展到能将真实世界中的所有事物都映射到虚拟世界中时,无数个某一时刻的世界汇集起来,在虚拟世界中将形成一个可以追溯的历史,如同过去以纸质保存历史事件的发生,将来将以电子数据对所有事物进行全息描述的形式存储世界的历史。二、体系架构目前, 物联网还没有一个广泛认同的体系结构,最具代表性的物联网架构是欧美支持的EPCglobal和日本的UID物联网系统。EPC系统由EPC 编码体系、射频识别系统和信息网络系统3 部分组成。UID 技术体系架构由泛在识别码(uCode)、泛在通信器、信息系统服务器、和ucode 解析服务器等4部分构成。EPCglobal 和UID上只是RFID 标准化的团体,离全面的“物联网”体系架构相去甚远。美国的IBM公司在2008年提出“智慧的地球”这一与物联网概念相近的概念,并提出通过INSTRUMENTED,INTERCONNECTED和INTELLIGENT这三个层面来实现智慧地球。在文献基础上,本文提出了物联网体系架构。1、智能物体层:通过传感器捕获和测量物体相关数据,实现对物理世界的感知。同时具备局部的互动性,需要一定的存储和计算能力。2、数据传输层:以有线或无线的方式实现无缝、透明、安全的接入,提供并实施编码、认知、鉴权、计费等管理。3、信息关联层:通过云计算实施对海量数据的存储和管理、数据处理与融合,屏蔽其异质性与复杂性,形成一个与真实世界对应的虚拟世界。4、应用服务层:从虚拟世界中提取信息,提供丰富的面向服务的应用。如智能交通、智能电网、智能医疗等等。需要指出的是,数据由底部的传感器通过网络到达应用服务层面,而实际上,在服务应用层面,各个中心、用户可以反向的通过网络由执行器对物体进行控制。 在该体系结构中,感知层面的各种传感器、执行器都是具体的,随着技术的发展会不断升级,新设备不断引入物联网。而服务应用层的各种需求也是不断提出的,并不是一层不变的。若是每个具体的服务应用和传感设备都形成一个独立的网络,最后可能形成许多套特殊的网络,这不利于推广和不便于维护。因此这需要物联网的网络层有一定前瞻性,物体设备层可以变化,服务应用层可以变化,但它们都是通过一个普适的网络进行连接,这个网络可以在一定的时间内保持稳定。三、面临的挑战1、统一标准物联网其实就是利用物体上的传感器和嵌入式芯片,将物质的信息传递出去或接收进来,通过传感网络实现本地处理,并联入到互联网中去。由于涉及到不同的传感网络之间的信息解读,所以必需有一套统一的技术协议与标准,而且主要是集中在互联上,而不是传感器本身的技术协议。现在很多所谓的物联网标准,实际上还是将物联网作为一种独立的工业网络来看待的具体技术标准,而应对互联需要的技术协议,才是真正实现物联网的关键。2、安全、隐私在物联网中所有“事物”都连接到全球网络,彼此间相互通信,这也带来了新的安全和隐私问题,例如可信度,认证,以及事物所感知或交换到的数据的融合。人和事物的隐私应该得到有效保障,以防止未授权的识别和攻击。安全与隐私这个问题,是人类社会的问题,不论是物联网还是其他技术,都是面临这两个问题。因此,不仅要从物联网内部的技术上做出一定的控制,而且要从外部的法规环境上作出一定的司法解释和制度完善。参考文献 Commission, IDE, Internet of things Strategic Research R CASAGRAS Final Report: RFID and the inclusive model for the Internet of ITU Internet Reports 2005: The Internet of T 2005, ITU
309 评论(10)

相关问答