雪灵Xue
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:提出-论点;分析问题-论据和论证;解决问题-论证与步骤;结论。 论文提纲也可以用最简单的格式和分类,简单明了地说明论文的目的、依据和意义,甚至是两句话。这种提纲往往是用于科学论文,而且在对于各种概念有相互联系而不是孤立的出来讨论的情况下。如果总要分出1、2、点来写的话,往往会变成“八股文”的模式,这样的论文往往是应付式的论文,其真正的科学价值会大打折扣。6编写步骤编辑(一)确定论文提要,再加进材料,形成全文的概要 论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配 写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲 论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。 编写要点 编写毕业论文提纲有两种方法: 一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。 二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法: 上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。 
人类是认识0早还是认识1早 在自然数中,存在着0和1这两个特别的数字,说它们特别,是因为它们具有特殊的“通行证”,如0加任何数仍得这个数,1乘任何数也仍得这个数!那么,这些数字到底是怎么由来的呢? 人类最初生活在一个没有数字的生活里,工作、生活起来十分不方便!大约在公元500年,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶波海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。后来,由于印度人在此基础上发明了阿拉伯数字,也就是现在我们所看到的“1”、“2”、“3”……人类才用上了数字。在我们的印象中,似乎是数越小,就来的越早,而通常报数时,往往总是先报“1”,而不是先报“0”,那么,人类到底是先发现1的还是发现0的? 起初,是没有0这个数字的,早期,人们是用结绳记数,0是后来由于数字需要才发明的定义的。 0这个概念也是由古印度人发明的,在古罗马和中国的数字字典是没有0这个数字的,而古巴比伦人用空格来代表0,后来古罗马和中国才根据古巴比伦人用空格的。在数字发明之后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。印度人首先发明了现用的阿拉伯数字中的1~9,用空格表示没有,但容易搞错,所以后来就用“.”表示没有。印度人的计数法传到阿拉伯后,阿拉伯人用“0”代替了印度人的“.”,并把它带到了欧洲,就有了现用的阿拉伯数字0~9。数字的写法经过不断的进化也和早期有所不同。应该说是印度人发明了现有的计数法,阿拉伯人改进完善了它。阿拉伯人对数字的形状进行了改造并把它传播到整个欧洲,最后风行全球。该数字系统得到全球普及,阿拉伯人功不可没,因此称为阿拉伯数字。 由 此看来,说明人类先认识1再认识0。 人类的知识源源不断,我们一定要好好发挖。
数学论文 —————兴趣是快乐学习数学的最好方法 孔子说,知之者不如好之者,好之者不如乐之者。带着兴趣学习数学,才能让自己更上一层楼。在深夜里,你会不会看着一串串数字而心生疲倦?在课堂上,你会不会听着老师的讲课而早已神游天外?在练习中,你会不会看着拦路虎而烦躁?久而久之,成绩下降了,你更加不愿学习它了。这可怎么办呢?你不如静下心来,慢慢体会数学中的乐趣,喜爱上数学。学习数学,有人觉得很简单,还有些同学则感到非常吃力,关键就在于是不是带着兴趣学。从小,祖冲之的小脑袋里就充满了各种奇思妙想,对于天地之间的秘密非常感兴趣。有一天,祖父带祖冲之去拜访一个精通天文的官员何承天。何承天很喜欢聪明伶俐的祖冲之,就问祖冲之:“研究天文不但很辛苦,而且既不能靠它升官,也不能靠它发财,你为什么还要钻研它呢?”祖冲之挺着小胸脯说:“我不求升官司发财,只想弄清天地的秘密。”打那以后,祖冲之经常去找何承天研究天文历法和数学,还研究各种机械造等,通过刻苦的钻研和丰富的实践,祖冲之终于成为杰出的数学家、天文学家。可见,兴趣是点燃智慧的火花,是探索知识的动力。而著名的居里夫妇却与中子的发现擦肩而过。1932年1月,约里奥居里夫妇用放射性元素钋所放出的a粒子轰击铍核,发现从铍核发出一种看不见的穿透力很强的中性射线,这种射线能量达到55兆电子伏,能将石蜡等含氢物质中的质子击出,他们认为这种中性粒子是光子。虽然很难解释光子会有这样大的能量能够把质子撞出来,他们仍认为这是发生了类似康普顿效应的某种特殊现象。英国科学家卢瑟福早在1920年就预言了中子的存在,他的学生查德威克一直在想办法通过实验寻找中子。查德威克从约里奥居里夫妇所做的实验受到启发,认为这很可能就是他正在寻找的中子,他重复了同样的实验并用云雾室作为探测器,从1932年2月2日开始狂热地投入工作状态,正是由于兴趣,他每天只睡3小时觉,仅用10天就成功地证实了这种射线是名为中子的中性粒子流,并计算出中子的质量。中子的发现对认识原子核内部结构是一个转折点,具有重大理论意义,由此也可以这样认为兴趣帮助查德威克获得1935年诺贝尔物理奖。"机遇只偏爱有准备的头脑”,查德威克由于有明确的指导思想,因而在实验中能拨开云雾,认清现象的本质,约里奥居里夫妇的类似实验由于缺乏明确的指导思想,而与中子的发现这一殊荣擦身而过。明白了兴趣对激发学习潜力的神奇作用,我们就该有意识地培养自己对数学的兴趣,而不是把它看做是我们的负担或者烦恼。有的同学只对物理感兴趣,不喜欢数学,其实向纵深研究物理时发现数学是其基础,因此我们就应该提高对数学的兴趣,从而带动其它学科。小时候,我们都玩过“巧算24点”这个游戏。别看这个游戏方式简单易学,它也考验了脑子的灵活性。玩游戏也是有技巧的,比如:你可以利用3×8=24、4×6等于24、2×12=24求解,这个方法用得最多,成功率也很高。经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点。是不是很奇妙呢?一个小小的游戏,都包含了数学知识,何况我们的生活呢!主动去学习,去探索,发现更多的乐趣,让兴趣成为我们学习数学的最好方法。自己写的。。供参考、、
一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。