lln001
统计学 - 统计方法测量的尺度统计学一共有四种测量的尺度或是四种测量的方式。这四种测量(名目,顺序,等距,等比)在统计过程中具有不等的实用性 。等比尺度(Ratio measurements)拥有零值及资料间的距离是相等被定义的,等距尺度(Interval measurements)资料间的距离是相等被定义的但是它的零值并非绝对的无而是自行定义的(如智力或温度的测量)。( Ordinal measurements)顺序尺度的意义并非表现在其值而是在其顺序之上。名目尺度(Nominal measurements)的测量值则不具量的意义 
常用的有:简单线性回归,多重线性回归,logistic回归,聚类,判别,主成分分析,因子分析,方差分析,时间序列分析,典则变量分析。
1、描述统计描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。2、假设检验参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。3、信服分析介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。
统计是要分析数据的,但首先需要考察的是,数据的是否合适,实验采集的数据是否符合分析的目的和要求。 所谓实验设计就是指设计实验的合理程序,使得收集得到的数据符合统计分析方法的要求,以便得出有效的客观的结论。它主要适用于自然科学研究和工程技术领域的统计数据搜集。 实验设计要遵循的三个基本原则: (1)重复性原则:即允许在相同条件下重复多次实验。好处是:其一可以获得更加精确的有效估计量;其二,可以获得实验误差的估计量。这些都是提高估计精度或缩小误差范围所需要的。 (2)随机化原则:是指在实验设计中,对实验对象的分配和实验次序都是随机安排的。是实验设计的重要原则。 (3)区组化原则:即利用类型分组技术,对实验对象按有关标志顺序排除,然后依次将各单位随机地分配到各处理组,使各处理组组内标志值的差异相对扩大,而处理组组间的差异相对缩小,这种实验设计安排称为随机区组设计。