期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    154

偷天书的狐狸
首页 > 期刊问答网 > 期刊问答 > 数学物理方程方面的论文选题

3个回答 默认排序1
  • 默认排序
  • 按时间排序

若耶

已采纳
微分方程数学物理方程是指在物理学、力学、工程技术等问题中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程(有时也包括积分方程和某些常微分方程) 。需要指出的是,这些描述普遍规律的方程(又称为泛定方程) ,必须加上一定的初始条件和边界条件等定解条件才能求解。泛定方程加上定解条件构成定解问题。为方便起见, 这里以波动方程为例, 讨论数理方程的几种常用解法。这些解法包括行波法、分离变量法和积分变换法。 主要解法包括:1 行波法 2 分离变量法 3 积分变换法4 格林函数法 5 变分法。

数学物理方程方面的论文选题

300 评论(14)

tccrd

数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:_Pasp?ArticleID=174
121 评论(15)

逍遥kebo

首先,题目不能太大。其实,题目太大以后,往往会因力不从心,容易失败。这里的"太大"是指:研究的问题"外延"太大,几乎是无所不在其中--不是概论、就是原理、不是数学、就是物理!这种文章表面上看起来很大气,可往往给人言之无物、华而不实之感。  同样地,如果选择的题目太小了,则显得轻而易举,不费力气,也不利提高。  当然 ,题目的大小,当然也不是绝对的,大题可以小作,小题可以大作。关键还在于如何确定具体的论证角度。  一般来说,大题目写起来容易空泛,这往往是由于学力不足,无法深入,写少了象蜻蜒点水,如浮光掠影;写多了则显得又臭又长。  相反,如果抓住一个重要的小题,能够深入本质,切中要害,从各个方面把它说深说透,有独到的新见解,那论文就一定有份量。  在选题时一般要注意:它的实用性、互异性、准确性、突破性等等  三、 材料要充分  选材是否合理是文章成败的关键。  写论文从整体构思,到题目确定,到论证过程等等,都不能离开选材--客观的资料。选材的目的,是采众家之长,成一已之见。因而,必须注意以下几个方面问题:  如何确立论点 即通过资料的收集、汇总、整理,把与自己的想法吻合的论点、论据、论证方法等挑选出来,并且从新的视角,予以新的观察。  如何独树一帜同类资料中,不同作者自有其不同的阐述与见解,我们可以把其中富有个性的典型论据、体现各自特点的合理论证,摘录出来,从而为自己独树一帜提供保证。  如何表现自我不少文章大同小异,因而,有关资料内容的交叉争议之点,往往也是文章的价值所在,关键之处。如果我们注意把这方面的资料整理出来,对于形成自己的主见,确定文章的论证角度和发展方向,则大有裨益。  如何精耕细作不少文章由于种种原因,原作者只是提出了问题。并未作详细而中肯回答。如将文中略写部分归拢在一起,加以扩充分析,我们会从中受到启发,从而修正原有的选题方向,对问题作出定向、定度的思考和研究。  总而言之,选材时,一定要注意不去作大而无当的联系和比较。必须有选择、有重点地找一些与我们的论点有关的东西来作对比研究,以便从中提炼出自己的见解。  四、 思路要清晰  在写论文之前,我们不妨先拟好一个写作提纲,如有可能最好是来一个初稿,然后再动手。  提纲可以帮助我们树立全局观,从整体出发,去检验每一个细节所占的地位,所起的作用,展现相互间的逻辑联系是否得当,各个部分之间的比例是否和谐,每一个部分、每一环节是否都是为全局所需要,是否丝丝入扣,配合默契,是否都能为主题服务……  初稿提纲只是论文的大致轮廓,不可能对每一细节都考虑周密完善,因而可以先写一个初稿。有了它,很可能发现原来提纲中某些设想有不恰当之处,这时就应加以调整或修改;对于有错误的论点、论据,或发现新的论点、论据,还应及时抽掉与增补,使之逐步完善。  初稿的写作通常有两种写法:  (一)、按提纲的顺序分段进行,它可以便文章的格调、风格前后保持一致,前后衔接紧凑、自然,避免旁逸斜出,防止语言、文字上的重复;  (二)、按内容的熟悉程度分段进行,这种写法有利于作者积极思考,便于捕捉创作的灵感。  五、 表达要准确  修改--论文的后期制作。反复推敲出佳句,精心修改得华章。  只有反复推敲和字斟句酌,文章才会显得具体、准确、生动,才能恰如其分地表述自己的教育、教研成果。  修改的范围可大可小,既可以来一个"亡羊补牢"--是发现什么问题,修改什么问题,通过材料的增删,使文章血肉丰满,使观点立之牢固,并与材料达到和统一;又可以"彻头彻尾"--发现问题,该舍就舍、该去则去,决不估息。在内容上包括修改观点,修改材料,在形式上包括修改结构,修改语言等。  修改观点在初稿形成后,要再看一看全文的基本观点是否正确,说明它的若干个从属论点,是否有失偏颇、带有片面性或表述得欠准确;同时还要关注一下自己的观点是否与别人类似或雷同,有无创意与新意等等。  修改结构从结构上来看,不仅要求论点、论据、论证三者关系处置得当、层次分明、脉络清楚,能使主题内容得到顺畅合理的表达,还要求文章的开头、结尾、段落、层次、过渡、照应、主次、详细等各个环节合理紧凑。  修改语言 要在语言的准确性、学术性、可读性等方面下功夫,文字力求准确、精炼、简洁、专业,努力做到字字珠玑、句句充实。  文章的最后衷心祝愿:每一位读者都成为锦绣文章的主人! ——发表吧
358 评论(10)

相关问答