期刊问答网 论文发表 期刊发表 期刊问答

极限的产生与应用论文

  • 回答数

    4

  • 浏览数

    225

淑女屋
首页 > 期刊问答网 > 期刊问答 > 极限的产生与应用论文

4个回答 默认排序1
  • 默认排序
  • 按时间排序

lsllx

已采纳
极限思想是高中数学中的一种重要的数学思想,利用极限思想使人们能够从有限中认识无限,从近似中认识精确,从量变中认识质变成为可能。高中数学教材中有多处内容渗透了极限的思想和方法,如“球的体积和表面积”、“双曲线的渐近线”等,但是极限思想在实际教学中没有得到普遍的认可和推广,学生对这种思想方法相当陌生。对于某些数学问题,如果我们能够灵活运用极限思想求解,往往可以避开一些抽象复杂的运算,降低解题难度,还可以优化解题思路,收到事半功倍的效果。下面是笔者尝试将极限思想和方法渗透融合在解题教学中,实现方法与内容的整合。一、寻求极限位置,实现估算与精算的结合例1 过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与QF的长分别是p、q,则 等于( )。 (A)2a (B) (C) 4a (D) 图1解析:本题是有关不变性的问题,常规解法是探求p、q、a的关系,过程繁琐,且计算较复杂。若能充分认识到变与不变的辨证关系,利用运动和变化的观点,借助于极限思想即取PQ的极限位置可使问题变得简便易行,如图1所示,将直线PQ绕点F顺时针方向旋转到与y轴重合,此时Q与O重合,点P运动到无穷远处,虽不能再称它为抛物线的弦了,它是弦的一种极限情形,因为 ,而 ,所以 ,故答案选C。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸显了试题的选拔功能。【评注】将精算与估算相结合,是一种重要的数学能力,有利于从不同层面对理性思维能力进行全面而又灵活的考查。因此,这类数学试题给高中数学教与学的方向以启示,注重多元联系表示,拓宽思维,提高思维含量。二、考查极限图形,简化计算例2 在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )。 (A) (B) (C) (D) 解析:如图2所示,设正n棱锥为 ,由于n多变,所以底面正n边形、侧面出现不确定状态,这样导致直接分析求解将是繁难,甚至是“到而不达”的,若另辟蹊径,采用极限法,则解法将是简捷、易行的,其计算量得到极大的简化。本例中底面正n边形固定,而棱锥的高不定,故可将顶点S看作是运动变化的,设相邻两侧面所成的二面角的平面角为 。当点S向下运动无限趋近底面正n边形的中心这个极限位置时, 趋于平角 ;当点S向上运动趋于无穷远时,侧棱将无限趋于与底面垂直,即正n棱锥趋近于正n棱柱,此时 无限趋于底面正n边形的内角 ,故二面角的取值范围是: ,从而答案选A。【评注】“化静为动,以动制静”,利用运动和变化的观点,着眼于问题的极限状态,摈弃了繁琐的数学运算,使得所研究问题更加直观、明朗。因此,根据问题的不同条件和特点,合理选择运算途径是提高运算能力的关键,而灵活地利用极限思想就成为减少运算量的一条重要途径。三、分析极限状态,探索解题思路例3 已知抛物线方程为 。求证:在x轴正方向上必存在一点M,使得对于抛物线上任意一条过M的弦PQ均有 为定值。分析:假设点M确实存在,因为过点M的任意一条弦PQ均有 为定值,因此对过点M的一条特殊弦——垂直于x轴的弦 也应该有 为定值。如图3所示,设 ,则 ,但是仅凭此式还看不出点M到底是哪个定点。下面再考查弦的一个极限情形——x轴的正半轴,它过点M,它的一个端点是原点O,另一个端点可以看成是无穷远处的极限点 (假想的点),它是弦的一种极限情形,显然有 ,所以 ,它也应该是定值,且 ,由此可得 ,于是可以猜想定点M(p,0),下证过点M(p,0)的任一弦PQ均有 (定值)。 图3证明:设过点M(p,0)的直线参数方程为 ,代入抛物线方程得 ,设此方程的两根为 ,则 ,而 的几何意义分别表示MP及MQ的值。所以 。因此点M(p,0)是满足题意的点。【评注】通过分解有关对象在运动变化过程中的极限状态,提取信息、信息整合,从而寻求到合理的解决问题的途径,降低了解题难度,优化了解题过程,有效激活了创新思维,凸显了极限思想在解题中的独特功能及应用的广泛性。四、巧取极限,实现无限与有限的统一例4 设数列 满足 (1)当 时,求 ,并由此猜想出 的一个通项公式; (2)当 时,证明对所有的 ,有① ;② 。解析:本题是数列与不等式的综合题,是考查猜想、归纳、迭代、放缩推理及分析问题和解决问题能力的一道优秀试题。(1)及(2)①入口宽,也易解决。但是(2)②的放缩难度较大,拉开了档次,体现了较好的区分度。事实上,(2)①的结论给解答(2)②有明确的启示。因为由 可以推导出 ( ),运用这个不等式来证明(2)②,思路最为清晰、快捷。这种要求,是考查考生进入高校继续学习的潜能所必须的。(1) (略)。(2)①用数学归纳法证明(略)。②由(2)①可知 ,即 。 于是 。 。【评注】本例利用了高等数学中的级数理论:正项级数 的前n项和有上界,故级数 收敛,但其收敛速度不大于 的收敛速度( )。其实从初等数学的观点也很容易理解:若单调递增数列 存在极限,则 。通过无限与有限的统一,实现了对不等式的放缩。利用极限思想,把问题放置于极限状态,即活跃了思维,又提高了分析、解决问题的能力。因此,教师要有意识地强化用极限思想解题的意识,并在不断应用它解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。自己去瞧瞧吧,,,,,我只能帮到这里了。。。。。

极限的产生与应用论文

334 评论(11)

Z369570

1, 在解题中例如我们以前的物理学科一般是某个因素在连续变化过程中另一个因素的变化情况,采用极限方法可以简化复杂的公式的证明,适合于选择题的快速解答比如电路中电阻变小,极限情况就是短路,电阻变大的极限就是断路,知道初始情况,知道极限情况,就可以选择变化规律正确的选项2, 经济方面经济学中的边际、弹性、消费者剩余等许多问题,都涉及到极限思想这一重要方法3,智力游戏其实都是些思路,举个例子:两人坐在方桌旁,相继轮流往桌面上平放一枚同样大小的硬币当最后桌面上只剩下一个位置时,谁放下最后一枚,谁就算胜了设两人都是高手,是先放者胜还是后放者胜?(G·波利亚称“由来已久的难题”)G·波利亚的精巧解法是“一猜二证”:猜想(把问题极端化) 如果桌面小到只能放下一枚硬币,那么先放者必胜证明(利用对称性) 由于方桌有对称中心,先放者可将第一枚硬币占据桌面中心,以后每次都将硬币放在对方所放硬币关于桌面中心对称的位置,先放者必胜从波利亚的精巧解法中,我们可以看到,他是利用极限的思想考察问题的极端状态,探索出解题方向或转化途径极限思想是一种重要的数学思想,灵活地借助极限思想,可以避免复杂运算,探索解题新思路
293 评论(13)

ganggangde

生命无极限生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。 生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。 生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。 在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!
152 评论(10)

pinkecust

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:
229 评论(9)

相关问答