学海无涯2018
写作点拨:一、 开题报告封面论文题目、系别、专业、年级、姓名、导师二、 论文的背景、目的和意义(目的要明确,充分阐明该课题的重要性):论文的背景、理论意义、现实意义三、国内外研究概况(应结合毕业设计题目,与参考文献相联系,是参考文献的概括):理论的渊源及演进过程、国内有关研究的综述、国外有关研究的综述四、论文的理论依据、研究方法、研究内容(思想明确、清晰,方法正确、到位,应结合所要研究内容,有针对性)五、研究条件和可能存在的问题六、预期的结果七、论文拟撰写的主要内容 (论文提纲)八、论文工作进度安排(内容要丰富,不要写得太简单,要充实,按每周填写,可2-3周,但至少很5个时间段,任务要具体,能充分反映研究内容)扩展资料:开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。 综述开题报告的综述部分应首先提出选题,并简明扼要地说明该选题的目的、相关课题研究情况、理论适用、研究方法。 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 
论文常用数据分析方法 论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧! 论文常用数据分析方法1 论文常用数据分析方法分类总结 1、 基本描述统计 频数分析是用于分析定类数据的选择频数和百分比分布。 描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。 分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。 2、 信度分析 信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。 Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。 折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。 重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。 3、 效度分析 效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示: 论文常用数据分析方法2 4、 差异关系研究 T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。 当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。 如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。 如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。 5、 影响关系研究 相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。 回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。 回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。