cyanfen
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。 
定性分析与定量分析的不同:1、定性,是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。2、定量,是用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。优缺点:1、定量分析方法更加科学,但需要较高深的数学知识。2、定性分析方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用。相同:它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。联系:定性分析与定量分析应该是统一的,相互补充的。定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论 。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。扩展资料:定量分析根据分析方法性质的不同,可分为化学分析法和仪器分析法。化学分析法:是依赖于特定的化学反应及其计量关系来对物质进行分析的方法。仪器分析法:仪器分析是分析化学中一个重要分支,该方法利用特定的仪器,可以对物质进行定性、定量分析。参考资料:百度百科-定性分析百度百科-定量分析
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。PythonPython,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。R软件R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。SPSSSPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。Excel 可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。SAS软件SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。
要数据分析,对论文很有作用,那是比较仔细的证明你这个论文非常靠谱,大家可知道幸福
定性研究与定量研究区别:1、着眼点不同。定性研究着重事物质的方面;定量研究着重事物量的方面。2、在研究中所处的层次不同。定量研究是为了更准确地定性。3、依据不同。定量研究依据的主要是调查得到的现实资料数据,定性研究的依据则是大量历史事实和生活经验材料。4、手段不同。定量研究主要运用经验测量、统计分析和建立模型等方法;定性研究则主要运用逻辑推理、历史比较等方法。5、学科基础不同。定量研究是以概率论、社会统计学等为基础,而定性研究则以逻辑学、历史学为基础。6、结论表述形式不同。定量研究主要以数据、模式、图形等来表达;定性研究结论多以文字描述为主。定性研究是定量研究的基础,是它的指南,但只有同时运用定量研究,才能在精确定量的根据下准确定性。这是二者的辩证关系。定量分析:优点:最大的优势是提供了描述性数据,比如允许我们捕捉用户群体的快照,但这些数据我们很难解释。定量的数据可以帮助你对整体用户行为和使用趋势有所了解缺点:对于定量分析而言,所有搜集来的数据和信息都可以被数字所衡量。定量分析仅仅是告诉了你查询到的数字。数字蕴含背后的意义难以知晓。定性分析:优点:可以为你提供定量研究无法为你提供的人类行为、情感和个性的细节。定性数据包含用户行为、需求、欲望、日常生活及用户案例相关的数据以及其他设计真正适合用户生活的其他重要信息。缺点:不含有数字的分析,很难达到准确以及深度。扩展资料定性分析与定量分析的关系定性分析与定量分析应该是统一的,相互补充的;定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论。相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。参考资料来源:百度百科-定性分析参考资料来源:百度百科-定量分析
数据分析对论文的意义是非常的 相当于是一个骨架 而论文的结束基本上是对这些数据分析的一个总结
EXCEL:最常见的数据分析软件,会的人比较多,功能也比较齐全,操作比较简单,可以分析,可以制图(图表类型也不少)等等,不过一旦数据量大了,EXCEL比较卡,确实有点浪费时间。SPSS:可以分析数据,可以做一些数据模型,但需要企业人员有一定的数据和统计基础,上手相对难些,用好了很不错。BDP个人版:有数据接入、数据处理、可视化分析等功能,操作简单,功能也比较齐全,数据图表效果也很好,主要数据可以实时更新,节省了很多重复分析的工作。不过BDP免费版接入的数据容量有限,这也是一个问题,除非要花费买容量咯。可以根据这些特点,选择适合企业的~