期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    179

猫0421
首页 > 期刊问答网 > 期刊问答 > 关于细菌的科学小论文六年级

3个回答 默认排序1
  • 默认排序
  • 按时间排序

云里一座城

已采纳
第一段总写细菌与人类关系:既有好处,也有危害后面用3-4段写这两种关系,要举实例最后总结,类似第一段

关于细菌的科学小论文六年级

320 评论(9)

benpaopinle

SBR工艺中硝化作用细菌的氨氮耐受性实验研究  摘要:针对SBR脱氮工艺中起硝化作用的亚硝化菌和硝化菌对氨氮的不同耐受浓度,在实验室中利用微生物培养的方法对此进行了实验研究,找出了这两种菌对氨氮的最适宜以及最高耐受浓度,为脱氮微生物的驯化培养以及以脱氮为目的SBR工艺的运行提供了参考。  关键词:生物脱氮 亚硝化菌 硝化菌 氨氮耐受性  The Experiment Research of Endurance of Nitrifying Organisms to Ammonia Nitrogen Pan  Abstract:The endurance concentration of nitrifying organisms in SBR to ammonia nitrogen is different so experiment were done to find out the optimum and maximal endurance concentration of nitrosomonas and nitrobacteria to ammonia The result provide reference to the engineering practice of the removal of ammonia nitrogen in SBR   Keywords: Unconventional pathways of nitrogen removal, nitrification , denitrification intermediate  氨氮在水体中浓度过高会使水体具有高耗氧性以及富营养化。目前,生物脱氮工艺中经常会涉及到高浓度氨氮废水的处理,比如说垃圾渗滤液中的氨氮浓度可以达到几万个mg/L甚至更高,在生物处理之前必须对其进行其他的预处理,比如说物理化学处理、浓度稀释等[1]。如果能通过预处理使得进入生化反应器的氨氮浓度控制在合适的水平,一方面能避免因负荷过高使脱氮微生物失去活性和死亡,另一方面也可以提高反应器的处理效率。  另外,近年来出现了废水生物脱氮的新机理,比如说短程硝化反硝化,就是将硝化过程控制在亚硝酸盐的阶段,再以亚硝酸盐为电子受体进行反硝化。这个反应的过程可以表示为  NH4+NO2-N2,相比NH4+ NO2-NO2- NO2-N2需氧量减少25%,碳源减少40%,并有反应速率高,产生污泥量少等优点[2] [3],控制氨氮浓度在一定的水平,可以实现优化亚硝化菌,淘汰硝化菌的目的。  1.生物脱氮的原理  废水的生物脱氮由硝化过程和反硝化过程实现,氨氮氧化成亚硝酸盐的硝化反应是由两组自养型好氧微生物通过两个过程完成的。第一步是先由亚硝酸菌将氨氮(NH4+-N)转化为亚硝基氮(NO2--N);第二步再由硝化菌将亚硝基氮转化为硝基氮(NO3--N),这两个反应可以由以下两个反应式表示:  NH4+ + 5O2 NO2-+ 2H+ + H20 (1)  NO2- + 5O2 NO3- (2)  反硝化是由异养型微生物,在缺氧或厌氧的条件下将NO2-–N和NO3-–N还原为N2,反硝化的生化过程可以由以下两个反应式表示:  NO2-+3H+5 N2 + H20 + OH- (3)  NO3-+5H+ 5 N2 + 2H20 + OH- (4)   实验过程及结果  1 SBR脱氮微生物的培养及脱氮效果  实验室中SBR反应器是一个有效容积为4L的有机玻璃柱,每个周期5小时,实验工序为:进水→厌氧搅拌3hr→曝气8hr →厌氧搅拌5hr→沉淀1hr→排水,每个周期排水2L进水2L,曝气阶段溶解氧控制在5~0mg/L。采用试验进水CODcr为720mg/L, NH4+-N为110mg/L。经过3个月的驯化,脱氮效果达到稳定的水平,总氮的去除率达到90%以上,CODcr去除率达到95%以上,实验期间污泥浓度MLSS=3368mg/L。  2 亚硝化菌和硝化菌的NH4+–N耐受性实验  于250 mL锥形瓶中分别加入100 mL(亚)硝化富集培养基,再取5滴活性污泥样液接种到富集培养基中,在各锥形瓶中分别加入NH4Cl溶液0mL、1mL 、2mL、 3mL、4mL、5mL、6mL、7mL ,于28゜C气浴恒温振荡器中振荡培养7天,观察各瓶(亚)硝化细菌的生长情况。每隔一天在白瓷板上按1:1的比例加入格里斯试剂的Ⅰ液和Ⅱ液,然后用无菌滴管分别取一滴富集培养液的培养物于白瓷板上,可观察到有些溶液的颜色逐渐变化。并且取各溶液用分光光度计测其吸光度。  颜色变化主要是由于培养时间不同,对NH4+-N耐受性不同,(亚)硝化细菌消耗的营养物量不同,产生的NO2-的量不同,与格里斯试剂反应,所得溶液颜色深浅不同,因此可采取用分光光度计测定亚硝化细菌的生长情况,以衡量其对NH4+-N的耐受性能力。  3亚硝化细菌的氨氮耐受性试验  按2所述的方法振荡培养7天,每隔一天观察。加入0mL、1mL 、2mL、 3mL、4mL、5mL、6 mL NH4Cl溶液的培养液颜色逐渐由浅粉色变到深红色;但加入NH4Cl溶液为7mL的,颜色并没有渐增,一直都是浅粉色。  以蒸馏水为参比,取各溶液用分光光度计测其500nm处的吸光度:用干净的移液管吸取不同浓度的2mL培养液分别于洁净试管中,再在每根试管中分别滴加一滴格里斯试剂Ⅰ液和一滴Ⅱ液,然后用移液管吸取1 mL 的Ⅰ液和1mL的Ⅱ液,果然试管中的培养液中加入0mL、1mL 、2mL、 3mL、4mL、5mL、6 mL NH4Cl溶液的颜色是深红色,而加入7mLNH4Cl溶液的培养液是浅红色。在500nm处测其吸光度,发现所有的培养液的吸光度都是无穷大,于是又分别从格样液中吸出1 mL的样液于另一干净试管中,再吸取4mL的蒸馏水于此试管中,即将样液稀释5倍。再装样液于比色皿中,测其吸光度数据见表1,根据表1中数据作图1和图2。  表1 不同的NH4Cl加入量下不同培养时间亚硝化菌样品的吸光度  培养时间加入NH4Cl的浓度 第1天 第3天 第5天 第7天  Omg/L 563 708 856 437  2mg/L 575 736 872 469  4g mg/L 586 743 902 492  6 mg/L 607 751 934 546  8 mg/L 648 774 179 500  0 mg/L 631 763 974 323  2 mg/L 482 517 718 976  4 mg/L 457 459 462 465  由图1可知,在加入0mL、1mL 、2mL、 3mL、4mL、5mL、6 mL下亚硝化菌均可生长,当加入4mL2mg/L的NH4Cl溶液时,此时培养液NH4+-N浓度是2×4/1000=8mg/L,样品的吸光值达到最大,说明亚硝化细菌生长数量最多,相比较而言该浓度是亚硝化菌的最适宜耐受浓度。由图2可以看出,当加入NH4Cl溶液为7mL时,培养7天,吸光度几乎没有变化,说明细菌的数量并没有明显的增加,说明在NH4+-N浓度为4 mg/L时亚硝酸细菌的生长几乎被抑制了。由于培养液NH4+-N浓度间隔较大,以致曲线上的点连续性并不理想,不能完全以8mg/L和2mg/L作为亚硝化菌对NH4+-N的最适宜和最大耐受浓度。但可以从曲线上估计出亚硝化菌对NH4+-N的最适宜耐受浓度为100mg/L~150mg/L;最高耐受浓度为180mg/L左右。  4 硝化细菌的氨氮耐受性试验  方法基本与亚硝化菌的实验方法相同,只是显色剂是二苯胺-硫酸试剂,观察到的变化是加入NH4Cl溶液0mL、1mL 、2mL、 3mL、4mL、5mL、6mL的培养液,颜色由浅蓝色变到深蓝色;加入7mLNH4Cl溶液,颜色基本一直是浅蓝色。测其吸光度数据见表2,根据表2中数据作图3和图4。  表2 不同的NH4Cl加入量下不同培养时间硝化菌样品的吸光度  培养时间加入 NH4Cl的量 第1天 第3天 第5天 第7天  Omg/L 473 545 617 724  2mg/L 575 626 742 781  4g mg/L 586 743 792 848  6 mg/L 607 751 934 973  8 mg/L 589 716 825 816  0 mg/L 569 631 661 737  2 mg/L 462 499 531 552  4 mg/L 400 404 402 397  由图3可知,在加入0mL、1mL 、2mL、 3mL、4mL、5mL、6 mL下硝化菌均可生长,当加入3mL2mg/L的NH4Cl溶液时,此时培养液NH4+-N的浓度是2×3/1000=6mg/L,样品的吸光值达到最大,说明亚硝化细菌生长数量最多,相比较而言该浓度是硝化菌的最适宜耐受浓度。由图4可以看出,当加入NH4Cl溶液为7mL时,培养7天,吸光度几乎没有变化,说明细菌的数量并没有明显的增加,说明在NH4+-N浓度为4 mg/L时亚硝酸细菌的生长几乎被抑制了。同样的道理,可以从曲线上上估计亚硝化菌对NH4+-N的最适宜耐受浓度为75mg/L~100mg/L;最高耐受浓度为180mg/L左右。   实验结果与讨论  通过对亚硝化菌和硝化菌的专项培养,找出亚硝化菌对NH4+-N的最适宜耐受浓度为100mg/L~150mg/L;最高耐受浓度为180mg/L左右;硝化菌对NH4+-N的最适宜耐受浓度为75mg/L~100mg/L;最高耐受浓度为180mg/L左右。  参考文献  高延耀,夏四清,周增炎城市污水生物脱氮除磷工艺评述环境科学1999,20(1):110~112  陈际达,曲中堂,邓钥,刘峥,汪俊亚硝酸盐反硝化脱氮重庆大学学报2002,25(3):81~83  任勇祥,彭党聪,王志盈,袁林江亚硝酸型硝化反硝化工艺处理焦化废水中试研究。西安建筑科技大学学报。2002,34(256~259)
106 评论(14)

yuxinwei622

水面上的硬币在研究物体的浮沉条件时,有个同学无意中发现了一个有趣的现象:把一塑料尺子竖放(或侧放)在水面时,发现尺子迅速下沉了;而当他把尺子平放在水面时,即可发现尺子漂在水面上。 竖放(或侧放)尺子在水面上时,尺子下沉,是由于尺子所受的浮力小于它自身的重力而引起的;那又为什么在平放尺子时,它却是漂浮在水面上,若按物体的浮沉条件,物体漂浮时浮力可是等于重力的呀。这两者岂不自相矛盾了吗?问题症结在哪里呢? 在高中物理教材第一册“固体和液体的性质”一章中,有一个小实验:要求学生用棉纸把缝衣针垫起放在水面上,当棉纸被水浸湿下沉后,观察现象并说明原因,很多同学认为缝衣针浮在水面是由于液体表面张力作用的原因,以为针受重力、浮力和液体表面张力三者相平衡而使针能漂在水表面上。 那么就让我们先来认识一下液体表面张力吧。 什么是液体的表面张力呢? 液体表面附近的分子由平衡位置向外运动时,因为外部空气和蒸气分子对它的斥力很小。不起显著作用。它只受到内部分子的吸引力,因此使它恢复到平衡位置的作用力就没有在液体内部时大,使得表面层里的分子振动的振幅要比液体内部分子的振幅大,一些动能大的分予就可能冲出吸力范围,成为蒸气分子,结果形成表面层里的分子分布比液体内部的分子分布稀疏,分子之间的距离就比较大(r>r0)、正是由于液面分子分布较内部稀疏,分子间距r>r0,分子间引力占优势而产生了液体表面张力,由此可知,液体表面的张力实质是分子间相互作用的合力,它指向液体内部,可见托起硬币的力不可能是液体表面张力。那么让我们再来看看浮力吧。 先让我们先做一个实验: 在一盛有水的烧杯的水面平放一张滤纸,把一枚面值一角的硬币平放在滤纸上,待滤纸被浸湿而下沉后,发现硬币仍漂在水面上。注意观察硬币周围会发现水面向下凹陷,而硬币并未浸入水中,只是漂在水表面上。由此可见,此时硬币并未受到浮力作用。那是什么力与重力相平衡而使硬币漂在水面上呢? 由上一实验现象可知,水面向下凹陷,发生了形变,从而产生了一个与形变方向相反的弹力——支持力,这就如在一个吹气的气球上放上一个物体,由于物体的重力而使气球形变(向下凹陷),而产生了竖直向上的支持力一样。是这个与重力大小相等、方向相反的支持力使硬币漂在水表面上。( 上面几个实验中的塑料尺子、缝衣针漂在水面上与此相同 ) 为什么侧放或竖放尺子、缝衣针以及硬币时,它们都将沉到水底呢?我们还是以硬币为例,当它侧放或竖放时,液面的受力面积很小,压强很大,压力作用效果显著;这与穿高跟鞋踩在沙地,鞋跟将陷入沙中一样,硬币陷入了水中,从而打破了水面的弹性形变,使水表面对它的支持力不复存在。此时硬币只受浮力和重力作用,而由于重力大于浮力,所以硬币很快就下沉到水底了。而平放时,对水面压强很小,就不会发生上述现象,而使硬币浮在水表面上保持平衡。在自然界中,也有许多相类似的现象。有些小昆虫可以在水面上跑来跑去或停留在水面上,不致于陷入水里,也是同样的道理。
150 评论(14)

相关问答