期刊问答网 论文发表 期刊发表 期刊问答

小学数学思维能力的培养论文

  • 回答数

    3

  • 浏览数

    181

vilin_li
首页 > 期刊问答网 > 期刊问答 > 小学数学思维能力的培养论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

信心9

已采纳
在小学数学教学中,提高学生学习数学的兴趣,培养良好的学习习惯,培养学生的逻辑思维能力、运算能力、空间想象能力和解决简单实际问题的能力是实施素质教育重要前提条件。真正做到授人以渔而不是授人以鱼,为学生将来的学习奠定基础。新课标确立了知识与技能、过程与方法、情感态度与价值观三纬一体的课程目标,将素质教育的理念体现在课程标准之中,通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现学习方式的转变,发展学生搜集信息、处理信息、获取新知、分析解决问题、合作交流的能力。那么,教师怎样通过明理启发、诱导,培养学生的思维能力,就此谈谈一些教学体会。一、激发小学生的学习兴趣,引发数学思维。大教育家赞科夫说:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”大家都说:“兴趣是最好的老师。”这些都是站在自身的立场上来阐明思维与兴趣的重要性,这是把思维与兴趣分开来看。如果把思维和兴趣这两者结合起来,将会达到更加完美的效果。随着教育教学改革的深入发展,在数学教学中如何有目的、有计划、有步骤地培养学生的思维能力,是每一个数学教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生的学习兴趣是非常重要的环节之一。从心理学角度看,如何抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,有利于发现新事物和事物的新要素,并进行积极探索创造。兴趣是学生学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习达到事半功倍的效果。那么,怎样激发学生的数学思维兴趣,调动数学思维的积极性呢?1、利用演示、操作。演示可把图由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。这样,既提高了学生学习数学兴趣,又增强了思维能力。2、保护好小学生的学习好奇心。好奇心是对所发生的新异事物感到惊奇,引发疑问,进行探究的心理倾问,它也能激发学生强烈的求知欲和浓厚的学习兴趣,有助于点燃思维的火花。3、克服以教师思维代替学生思维、教师讲、问牵着学生听、答的教学现象。要为学生留出足够的思维活动的空间,让学生利用自己的学习方式,在已有的生活经验和认知结构的基础上,自己动手、动脑、动口,在活动探究中发挥创造性,进行自主的建构。4、考虑到学生现有心理水平,按照维果茨基的最近发展区原理,为学生创造一定问题情境,是引发学生思维活动的外部环境因素。古人云:“学起于思,思源于疑”。有疑才能引发学生的求知欲,才能使他们处于积极主动的状态。在教学时通过谈话、设问、提问、实验等各种方法,创设一定的问题情境,可以调动学生参与学习活动的积极性,引起学生主动观察和思考的兴趣。二、以具体的感性材料为基础,逐步提高,促进学生的思维能力。在数学基础知识教学中,加强对定义、法则、定律等的教学,这同时也是对学生进行初步的逻辑思维能力培养的重要手段。但是这方面的教学内容比较抽象,学生年龄小,生活经验不足,抽象能力较差,学习吃力等原因,因而我们只是重视了“算”而忽视了这样一个抽象思维训练的机会。小学生学习抽象的知识,是在感性认识的基础上而产生质的飞跃,感知认识是学生理解知识的基础,具体形象是数学抽象思维的有效途径和重要信息来源。在平时的日常教学中,我们应注意由具体到抽象,逐步提高培养学生的抽象思维的能力。如,在教学“圆的认识”时,先用学生在现实生活中遇到的圆形的物体举例,使学生认识圆与其它平面图形的不同之处,但如何画圆,老师不亲自示范,就让学生自己大胆尝试想法设法。“你们会画出标准的圆形吗?看谁的方法最好最多?”这样,学生学习的好奇心、积极性充分调动起来了,人人动手、动脑,很快,大部分学生知道并学会用圆规及借助圆形物体(如墨水瓶、茶杯盖、硬币等)画圆的方法。这时候,老师及时表扬他们主动动手参与、积极探索,然后再问:“如果要建设一个圆形大花坛或者大水池,能用圆规画出来吗?”这样又进一步激励了学生,他们争先恐后地投入思考动手实践中。通过实践操作,终于又发现了用标杆和绳子可以画较大的圆。多种形式的评价、鼓励、激励思维也很重要。学生个体思维水平因人而异采取不同的评价方式,借助各自思维的“亮点”进行激励,不使任何一个学生的思维火花因评价不当而熄灭。三、 精心设计教学内容,培养学生的数学思维迁移能力这一点不仅要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,还要将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的课外知识,让学生们理解到各学科之间的联系,学会融会贯通,从真正意义上产生对知识的渴望。 因此培养学生学习数学的求异思维和立体思维至关重要。1、求异思维。对于小学生而言,既要培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立解决问题的习惯。如,一位教师在教学“乘法意义”的运用一课时,出示了这样一道加法题:7+7+7+5+7=?让学生用简便方法计算。于是一个学生提出了7×4+5的方法,而另一个学生则提出了“新方案”,建议用7×5-2的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的7,他假设在5的位置上是一个7,那么就可以把题目先假设为7×5。接着他的思维又参与了论证:7-2才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的突现,我们要倍加珍惜和爱护。2、立体思维 。一题多解是学生产生浓厚学习兴趣的基础,也是培养学生数学立体思维能力的重要源泉。如,一辆摩托车上午3小时行驶了5千米,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。综合算式是5÷3×2+5=5(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:5÷3×(3+2)=5(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:5×2-5÷3=5(千米)。其中,5×2,表示行驶6小时的千米数,5÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶的千米数了。这便是一种创新的解法。3、发散思维。学生的思维有时会出现“卡顿”的现象,这就是思维的障碍点,此时教学适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个?学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。因此,在数学教学的过程中,教师要特别注意培养学生根据题目中的具体条件,灵活地运用数学方法,通过变换角度思考问题。这样,就可以发现新方法,制定新策略,长期坚持这样的方法训练,学生一定能产生较强的数学创新思维能力。数学是一门逻辑性、抽象性、系统性很强的学科。如何使小学生的数学基本思维能力得到发展,这将是我们数学教师长期的有意识的教学目标。在教学中,提高学生的学习能力,培养学生的思维意识,多给点思考的机会,多方面培养学生的思维品质,必将成为我们数学教师努力的方向。 让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学普学,让他们的数学思维能力在课堂学习中得到充分的发展!

小学数学思维能力的培养论文

283 评论(10)

syx3355

一、激发学生思维动机动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机是培养其思维能力的关键因素。教师如何才能激发学生思维动机呢?这就要求教师在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学根据实际情况用“进一法”和“去尾法”取商的近似数的应用题时,先出示题目:小强的妈妈要将5千克香油分装在一些玻璃瓶里,每个瓶最多可盛4千克,需要几个瓶?再让学生读题,分析解题思路。当学生回答出求需要准备几个瓶,就是看5千克里有几个4千克时,我先让学生猜一猜需要几个瓶,然后让学生独立计算出结果。算出结果为25,我问学生:“按‘四舍无入’法我们准备6个瓶子可以吗?”学生回答说“不可以。” 我又问:“为什么?”学生都知道需要再准备一个瓶子装剩下的1千克油,所以需要准备7个瓶子才行。最后让学生验证自己的猜想,老师并告诉:这种根据实际情况取近似数的方法叫“进一法”。随后用同样的方法教学了“去尾法”。由于这些例题都是生活中遇到的问题,学生容易理解掌握。这样也引发了学生探求新知的思维动机。这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。二、理清学生思维脉络认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。引导学生抓住思维的起始点数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。引导学生抓住思维的转折点学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。抓住转折点,有利于克服学生的思维障碍,有利于发散思维的培养。三、在数学教学中培养学生的思维批判能力没有批判就没有创新。因此,批判性思维也是思维品质的一个重要方面。设计些陷阱式的思维问题,能培养学生的批判思维能力。例如:在教学中我们经常看到这样的现象,当一个问题正面学习完以后,仅有大约百分之六十的学生基本掌握,有的学生因用错了概念、法则、公式、定理而把题做错。因此,应加强从反面培养学生的思维批判能力。在教学实践中,当讲完某一数学知识后,我故意设陷阱给学生,创设下列情境:一是使学生欲言而不能,心欲求而不得;二是诱使学生“上当”“中计”。经过分析批判后才恍然大悟。这种对事物的认识正确程度是正面培养所不能达到的。四、教师要设计好练习题培养学生思维能力   1 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。设计练习题要有针对性,要根据培养目标来进行设计例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的'能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。设计一题多变题,培养学生的思维能力小学数学知识的结构,都是由浅入深,由易到难,由简单到复杂的。如果教师在教学过程中依照知识的内在联系,适当地运用“一题多变”,可以防止学生的认识局限在所学的例题里,还可以避免解题的思路来束缚原有的路子,从而增强学生解题的应变能力。培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。通过练习,学生的思维能力得到了进一步提高。
85 评论(11)

z小楠

如何在小学数学教学中培养学生的逻辑思维能力培养学生的思维能力是现代数学教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生逻辑思维能力的重要任务。下面就如何培养学生逻辑思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学的主要目标 根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”。从数学学科的特点看。数学本身是由许多概念组成的体系,这些概念是用数学术语和逻辑术语及相应的符号所表示的数学语句来表达的。并且借助逻辑推理形成一些新的判断。小学数学虽然内容简单,却离不开判断和推理。从小学生的思维特点来看。他们正处于从形象思维向抽象逻辑思维过渡的阶段。特别是小学中、高年级,正是发展抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目标,既符合数学的学科特点,又符合小学生的思维特点。 二 培养学生逻辑思维能力要贯穿在小学数学教学的全过程 教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目标。如果不注意到这一点,教材没有有意识地加以编排,教法又违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样才能将培养学生逻辑思维能力贯穿于小学数学教学的全过程?我认为必须从以下几方面加以考虑。 (一)培养学生逻辑思维能力要贯穿在小学阶段各年级的数学教学中 作为小学数学教师,要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,初步培养学生的比较能力。教学10以内的数和加、减计算,初步培养学生抽象、概括能力。教学数的组成,初步培养学生分析、综合能力。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生逻辑思维能力要贯穿在每一节课的各个环节中。 不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养逻辑思维能力要贯穿在各部分内容的教学中。 教学数学概念、计算法则、解决实际问题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去,并能说出根据什么可以使计算简便。这样又学到演绎的推理方法。至于运用数学知识解决实问题如何引导学生分析数量关系,这里就不再赘述了。 三 精心设计好练习题,对于培养学生逻辑思维能力起着十分重要的作用 培养学生的思维能力和学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级实际情况不同,课本中的练习题不完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此本人提出以下几点建议仅供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以正确地断定“所有的质数都是奇数”的判断是错误的。
259 评论(11)

相关问答