期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    333

王张扬33
首页 > 期刊问答网 > 期刊问答 > 惯性力学论文题目推荐初中生

2个回答 默认排序1
  • 默认排序
  • 按时间排序

我是静默的

已采纳
一、关于历史与内容课本上将这一节(1)的内容分成两个部分,即将牛顿第一定律的内容与建立牛顿第一定律的历史区分开来。作者的这一增加学生的科学历史观的企图无疑是正确的:“作为思想形式的自然科学,存在于且早已存在于一个历史的连贯性中,并且为了自身的存在,它依赖于历史思想……一个人除非理解历史,否则他就不能理解自然科学(2)”。可是,另一方面,在作者看来,这样一种对课本内容的划分是有疑问的。最起码的是,这种划分把牛顿第一定律当成一个不变的、终结性的东西。对牛顿之前,讲了从亚里士多德以来的两千年的历史,而对牛顿之后却什么也不讲,这就使学生对牛顿第一定律的领悟有一种僵化的感觉。作者认为,在牛顿第一定律的历史与内容的关系中至少要考虑到下面两个问题。第一,课本上引述了一段亚里士多德的话:“必须有力作用在物体上,物体才能运动,没有力的作用,物体就要静止下来。”对于这样的一种写作方式与引述的这样一段内容,作者不敢苟同。从写作方式上而言,作者认为,我们应当对在人类历史长河中有卓越贡献的人物的论述是肯定性的。要是在教科书中纯粹来论述否定性的人物或否定性的结论的话,那何必要用亚里士多德来开刀呢,人类历史长河中这类人物简直是多得不计其数。或许,这种陈述方式是来自于思想界的习惯。真像黑格尔所说(3):“亚里士多德乃是从来最多才最渊博(最深刻)的科学天才之一,——他是一个在历史上无与论比的人…… 虽然他许多世纪以来乃是一切哲学的教师,但却从没有一个哲学家曾被完全没有思想的传统这样多地歪曲过,这些关于他的哲学的传统的说法,过去一直被保持着, 到今天情形还是如此。人们把与他的哲学完全相反的观点归之于他。柏拉图的著作被广泛地阅读,亚里士多德则直到最近几乎还未被认识,所流行的乃是关于他的一些最错误的偏见。”从内容上而言,事实上,课本上引述的亚里士多德的话,同亚里士多德关于力和运动关系的论述是有出入的。关于这一个问题,由于太过于复杂,作者将另文论述,只是在这里需要指出:亚里士多德关于力与运动方面所论述的原义和这里大相径庭;我们应当在古希腊哲学的背景中去领会亚里士多德关于力与运动关系的论述;或者可以更直截了当地说,亚里士多德根本没有讲过引文中的话!(4)仍然,我们通常认为经典力学起源于人们对于亚里士多德物理学的批判。但从历史的观点来看,经典力学毫无疑问与亚里士多德物理学及中世纪物理学有着紧密的关系。因而,我们不能用非此即彼的态度来给真实而复杂的历史下一个粗暴而简单的结论。另外一点需要特别指出的是,根据作者的研究,由于牛顿第一定律与牛顿第二定律有本质的区别(5)。与牛顿第一定律的发展有历史渊源的亚里士多德物理学中的内容不是力与运动的关系(事实上这是与牛顿第二定律的发展有历史渊源的),而是亚里士多德关于“天然运动”(6)与“天然处所”的观点。当然,这一点对一般的读者来说可能太为难了,但作者有责任指出这一点。事实上,我们从牛顿所列举(7)的关于牛顿第一定律的例子中就可看到这一踪迹。第二,惯性定律是人类理性在两千多年的历史长河中发展的产物,它不仅在牛顿之前经历了曲折的发展历程,在牛顿之后也有了很大的发展。在这里特别一提的是爱因斯坦与诺特尔对惯性定律的发展所作出的创造性工作。特别是爱因斯坦在创建了广义相对论以后,使得惯性定律变得更有包容性:“物理学定律比牛顿所想象的情况简单得多。我们不需要对偏离惯性定律的情况作出解释。因为根本不存在偏离惯性定律的情况,所有运动都是惯性运动,所有物体完全沿着时空的自然等直线运动。这些等直线的形状则取决于对这些等直线进行观测所处的参照系。在惯性参照系中,等直线碰巧是直线。在其他参照系中等值线为曲线。在惯性参照系与其他参照系之间不存在任何实质的区别,也没有物理学上的区别,而只有几何学上的区别。在所有参照系中物理定律都有一样,而且所有运动都是惯性运动。”(8)爱因斯坦将惯性定律表达成:“一个质点离开其他一切质点都足够远时,它的加速度的各个分量就消失了。”(9)显然,这种我们看起来比较特殊的表达方式受到了卡尔·皮尔逊的极大影响:“第一定律被视为相当于这样的陈述:周围环境决定加速度——没有其他粒子存在就没有加速度。”(10)在这里,皮尔逊敏锐地捕捉到了惯性的由周围环境的决定性,为二十世纪初诺特尔的证明作了思想上的准备。因而,我们在讲述惯性定律时,必须思考这样一个问题:我们应当怎样来把握惯性定律的度?作者认为,爱因斯坦的相对论意义下的惯性观,已远超出了中学物理学的范围,但诺特尔关于时间均匀性与空间对称性的观点却是必须向学生讲授的。因为从时空的性质来论述、讲解惯性,使学生接触到了关于惯性的更本质的东西。同时根据作者的实践,学生也是可以接受的。二、关于自然观与方法论课本上对牛顿第一定律及其它内容的陈述主要是结论性的。其次,是对伽利略的方法论作了简要介绍,而对于与方法论有重大关系的自然观却只字未提。可是,无论是在欧洲的思想史上还是在欧洲的科学史上,自然的观念始终是一个焦点,也始终是一个热烈和持久的被反思的课题。而以自然的观念为基础的自然科学也随之被赋予了新的面貌(11):牛顿第一定律的历史,正首先是一个对自然观念变更与进化的佐证。也正是人类首先在自然的观念上起了变化,才导致了对自然研究方法的不同,从而也得到了不同形式的结论。爱因斯坦在谈到广义相对论的创立过程时就非常明白地表明了这一点。(12)从另外一层意义上来说,自然观无论是对科学定律的建立还是对学生科学素养的提高都起着十分重要的作用。因而,作者认为很有必要在讲述牛顿第一定律的历史时加入非常具有代表性的三位思想者的自然观,从而使学生的思维也越靠近历史的真面目。素质教育的目标是找寻人类智慧之根,是使人的认识返朴归真。可是对于牛顿以前的科学家却由于我们知之堪少,只能记得他们的个别结论了,对于他们的方法论只是一知半解,而对于他们的自然观则几乎毫无感觉了。但是,在科学创造中,自然观念总是起着先导的作用,他决定着科学创造的方向与内容。由上述所论述的观点,作者对现行课本中牛顿第一定律的教学内容进行了适当的调整。现将作者的具体讲课提纲列于下面:1、 亚里士多德(Aristotle前384-322古希腊自然哲学家和思想家)(1)自然观:自然界是一个自我运动着的事物的世界,展现在自然界中的变化和结构是按逻辑关系相互联系的,变化的最后结局是循环。a、提出了关于自然变化原因的“四因说”:形式因、质料因、动力因、目的因b、在运动的形式方面将天和地区分开来(2)方法论:观察现象、归纳得出解释性原理、演绎出关于现象的陈述(3)结论:天体的运动是“天然运动”;地面上的物体有个“天然处所”(4)贡献:开辟了探索自然界奥秘的一条新路——观察2、 伽利略(Galilao Galilei 1564-1642意大利物理学家)(1)自然观:大自然是和谐的,自然的真理存在于数学的事实中,自然中真实的和可理解的是那些可测量并且是定量的东西(2)方法论:观察提问、合理假设、数学变换、实验验证(3)结论:当一个物体在一个无限延伸的水平面上运动时,假如它没有遇到任何阻碍的话,……它的运动将永远以不变的速度继续下去(4)贡献:提出了新的研究方法——数学变换和科学实验3、 牛顿(Newton 1642-1727英国科学家)(1)自然观:自然界是真实的、客观的、是由各种实在的粒子所组成;自然界的结构是简单的、和谐的、各种运动是有规律的,并且这些规律应该建立在观察和实验之上;物理世界是一个因果性的完整体系(2)方法论:分析与综合,强调论证要用实验验证(3)结论:一切物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止a、“一切物体”是指地下物体与天上物体b、惯性:使物体保持原来的静止或匀速直线运动状态的性质一切物体都有惯性c、惯性是宇宙的时间均匀性与空间对称性的结果d、牛顿第一定律是关于自然之美的定律(4)贡献:我不知道别人是怎么看我的,我觉得自己就像是一个在海滨玩耍的孩子,不时地拾到了一些光滑而美丽的贝壳,而真理的大海离我还很远。如果我有什么贡献的话,那是因为我站在巨人的肩膀上。4、 牛顿之后(1)爱因斯坦的“相对论 ”揭示了空间与时间是有联系的1905(2)“量子力学”的发展表明,基本粒子的性质与对称性有极大关系1927(3)扬振宁、李政道提出了“宇称不守恒”,吴健雄用实验验证了这一理论 1956-1957在此,作者对上述提纲作两点简要的说明。第一,在提纲中特别指出了,一切物体是指地下与天上物体。因为作者感到这一点非常重要。牛顿第一定律中所包含的这几个字的含义正是表明了由哥白尼所阐述的新天文学理论的绝对胜利,也表示了任何一种对地下与天上物体之间作任何质的区别的否定。同时,我们也看到这一结果的得来花了多大的代价——布鲁诺为此被烧死在火刑柱上。(13)而作者在长期的教学实践中看到的情况是,有不少教师将“一切物体”解释成是气态、液态、固态等情形。第二,提纲中将惯性看成是时间均匀性与空间对称性的结果。这似乎是远离了学生的想象力,不好讲。对此,作者在实践中用了这样一个逻辑过程,供大家参考:既然一切物体均有惯性,那么,惯性就是一切物体的性质,而一切物体是用什么观念来表示的呢?当然是宇宙,那么,宇宙又是什么呢?就是时间与空间。作者的体会是,学生根据高一地理课本上的知识是可以领会的。三、关于阅读材料课本上有一个标题为《爱因斯坦谈伽利略的贡献》的阅读材料。作者的问题是:这篇材料放在这里是否恰当?首先,这一章的内容是牛顿运动定律,牛顿的贡献才是学生首要了解的内容。并且,在前一章的阅读材料《伽利略对自由落体运动的研究》(14)中已经对伽利略科学研究的方法作了比较完整的介绍,似乎没有必要在这里再对伽利略的贡献进行笼统的说明。作者在实际的教学实践中用了一段教师教学用书(15)上关于牛顿生平的资料作为学生的阅读材料,这一段材料间要、明白、清楚,学生对它的反应良好。而且,这样的做法也同时弥补了在课堂教学中讲述牛顿贡献上的不足。另外,《物理学的进化》这本书主要是出自英费尔德的手笔,爱因斯坦只是列出了一个关于本书的写作大纲。因而,这本书的文字并不严格地等于爱因斯坦的思想。爱因斯坦写本书的目的主要是为了解决英费尔德的生活问题。因而我们并不能把这一本书看作是一本严谨的科学著作,它只是一本一般性的科普读物。而在文章的最后,用“毁灭直觉的观点而用新的观点来代替它”作为对伽利略的发现的重大意义的评价是否妥当?对于爱因斯坦来说,由于他是一个深信物理概念是人的思维自由创造(16)的理论物理学家,因而他论述伽利略贡献的视角就会同历史学家的视角不一样。事实上,伽利略是如此丰富的一个天才。我们完全可能从他的详细观察力、深刻的直觉把握力、娴熟的数学技巧、精湛的实验技能的任何一个方面来谈论他对科学的贡献。况且,爱因斯坦在不同的阶段、不同的场合对伽利略贡献的论述也是有区别的:“纯粹的逻辑思维不能给我们任何关于经验世界的知识;一切关于实在的知识,都是从经验开始,又终结于经验。用纯粹逻辑方法所得到的命题,对于实在来说是完全空洞的。由于伽利略看到了这一点。尤其是由于他向科学界谆谆不倦地教导这一点。他才成为一代物理之父——事实上也成为整个近代科学之父”。(17)“常听人说,伽利略之所以成为近代科学之父,是由于他以经验的,实验的方法来代替思辨的、演绎的方法。但我认为,这种理解是经不起严格审查的。任何一种经验方法都有其思辨概念和思辨体系;而且任何一种思辨思维,它的概念经过比较仔细的考察之后,都会显露出它们所由产生的经验材料。把经验的态度同演绎的态度截然对立起来,那是错误的,而且也不代表伽利略的思想。”(18)当然,作者在这一篇文章不是为了研究伽利略的贡献问题,只是想表明,《物理学的进化》中的这一片段放在这里当作阅读材料的不恰当性。再次,在这段引文中出现了“直觉”这个概念。可是,什么是“直觉”?也许这对于任何一个人来说都是一个很难回答的问题。并且,作为与直接观察结果相对应的直觉及直觉的观点也是有重大区分的。对此,不要说对于高一的学生,就是许多教师可能也很难把握。因而,很难说这篇阅读材料会给学生留下怎样的印象。作者的多虑之处是:我们不能由于与爱因斯坦有关的这一段文字而把直觉打入死胡同。因为正如拉格朗日所认为的那样(19):伽利略在力学方面从经常看到的现象中发现规律是有超凡的天才的。伽利略的这种天才难道与他的直觉毫无关系吗?事实上,“我们所认识的,都是同时凭直觉和推论获得的,即通过感觉和知性相结合的使用而获得的。”(20)“科学的发展有时不是靠逻辑的思维和推理,而是一种理性的直觉。逻辑是证明的工具,理性直觉是发现的工具。(21)”杨振宁也说过:“我曾对中国科技大学的同学们提出过‘三P’:Perception,Persistence,Power,意思是:直觉,坚持,力量。要有科学的直觉意识去创造,用坚持不懈的努力去奋斗,以扎实的知识力量去克服困难。(22)”直觉是人对存在的一种最基本的表象能力,它是人的意识基础中一个不可分割的内核,它也与人的判断力有关:“直觉的最奇妙的?因而我们不能简单地说直觉是对的还是错的。并且教育的目的何不是为了使学生最终获得一种良好的与直觉有关的综合判断力呢?四、关于习题课本上对这一节的内容安排了五个习题。可是,在作者看来(24),这五个题目中只有第一个是从不太严格的意义上来说是可做的,而其余四个均是不恰当的。其中第二题、第三题中的小题及第四题是属于非惯性系中的动力学问题。其实,我们从课本上第三章第八节《惯性系和非惯性系》这一内容后面习题的缺乏就可以看出作者在处理这一内容上的贫乏与混乱性。而第三题中的和 小题则是关于牛顿第二定律的应用题,也就是说只能用牛顿第二定律而不能用牛顿第一定律来解释。第三题中的小题则应当放在第五章第二节《运动的合成和分解》里面。至于第五题,则是一个文不对题的题目,作者已经非常明确地指出了这一点。为此,作者在具体的课堂教学实践中设计了下面几个习题。结果表明,学生的接受性较好。1.用亚里士多德的四因说解释你认为感兴趣的一件事2.关于伽利略的理想实验,下列说法中正确的是 ()A.只要接触面相当光滑,物体在水平面上就能匀速运动下去B.这个实验实际上是永远无法做到的C.利用气垫导轨,就能使实验成功D.是想象中的实验,建立在大自然是和谐的观点之上3.你认为如果时间不均匀,空间不对称,则这个世界将是一个怎样的情形?4.下列关于惯性的说法中,正确的是A. 不用力踏自行车,自行车会渐渐停下,所以惯性就逐渐消失B. 惯性与物体质量的大小无关,与物体是否运动无关。与物体速度是否变化无关C. 当物体处于静止状态或做匀速直线运动时,表现出了惯性D当物体做变速运动时,没有表现出惯性,因而此时惯性不存在

惯性力学论文题目推荐初中生

348 评论(10)

jeffen_huang

[艾萨克·牛顿] 牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。 在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。 早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。 1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。 牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来…… 一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。 牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。 当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。 在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。 牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。 ----------------------------------------------------------------- ----------------------------------------------------------------- [伽利略] 主要贡献: 可分下列三个方面: ①力学 伽利略是第一个把实验引进力学的科学家,他利用实验和数学相结合的方法确定了一些重要的力学定律。1582年前后,他经过长久的实验观察和数学推算,得到了摆的等时性定律。接着在1585年因家庭经济困难辍学。离开比萨大学期间,他深入研究古希腊学者欧几里得、阿基米德等人的著作。他根据杠杆原理和浮力原理写出了第一篇题为《天平》的论文。不久又写了论文《论重力》,第一次揭示了重力和重心的实质并给出准确的数学表达式,因此声名大振。与此同时,他对亚里士多德的许多观点提出质疑。 在1589~1591年间,伽利略对落体运动作了细致的观察。从实验和理论上否定了统治千余年的亚里士多德关于“落体运动法则”确立了正确的“自由落体定律”,即在忽略空气阻力条件下,重量不同的球在下落时同时落地,下落的速度与重量无关。根据伽利略晚年的学生V维维亚尼的记载,落体实验是在比萨斜塔上公开进行的,但在伽利略的著作中并未明确说明实验是在比萨斜塔上进行的。因此近年来对此存在争议。 伽利略对运动基本概念,包括重心、速度、加速度等都作了详尽研究并给出了严格的数学表达式。尤其是加速度概念的提出,在力学史上是一个里程碑。有了加速度的概念,力学中的动力学部分才能建立在科学基础之上,而在伽利略之前,只有静力学部分有定量的描述。 伽利略曾非正式地提出过惯性定律(见牛顿运动定律)和外力作用下物体的运动规律,这为牛顿正式提出运动第一、第二定律奠定了基础。在经典力学的创立上,伽利略可说是牛顿的先驱。 伽利略还提出过合力定律,抛射体运动规律,并确立了伽利略相对性原理 伽利略在力学方面的贡献是多方面的。这在他晚年写出的力学著作《关于两门新科学的谈话和数学证明》中有详细的描述。在这本不朽著作中,除动力学外,还有不少关于材料力学的内容。例如,他阐述了关于梁的弯曲试验和理论分析,正确地断定梁的抗弯能力和几何尺寸的力学相似关系。他指出,对长度相似的圆柱形梁,抗弯力矩和半径立方成比例。他还分析过受集中载荷的简支梁,正确指出最大弯矩在载荷下,且与它到两支点的距离之积成比例。伽利略还对梁弯曲理论用于实践所应注意的问题进行了分析,指出工程结构的尺寸不能过大,因为它们会在自身重量作用下发生破坏。他根据实验得出,动物形体尺寸减小时,躯体的强度并不按比例减小。他说:“一只小狗也许可以在它背上驮两三只同样大小的狗,但我相信一匹马也许连一匹和它同样大小的马也驮不起。” ②天文学 他是利用望远镜观测天体取得大量成果的第一位科学家。这些成果包括:发现月球表面凹凸不平,木星有四个卫星(现称伽利略卫星),太阳黑子和太阳的自转,金星、木星的盈亏现象以及银河由无数恒星组成等。他用实验证实了哥白尼的“地动说”,彻底否定了统治千余年的亚里士多德和托勒密的“天动说”。 ③哲学 他一生坚持与唯心论和教会的经院哲学作斗争,主张用具体的实验来认识自然规律,认为经验是理论知识的源泉。他不承认世界上有绝对真理和掌握真理的绝对权威,反对盲目迷信。他承认物质的客观性、多样性和宇宙的无限性,这些观点对发展唯物主义的哲学具有重要的意义。但由于历史的局限性,他强调只有可归纳为数量特征的物质属性才是客观存在的。 伽利略因为支持日心说入狱后,”放弃了”日心说,他说”考虑到种种阻碍,两点之间最短的不一定是直线”,正是因为他有这样的思想,暂时的放弃换得永远的支持,没有像布鲁诺那样去壮烈,但却可以为科学继续贡献自己的力量。 ---------------------------------------------------------------- --------------------------------------------------------------- [约翰尼斯·开普勒] 行星运动定律的发明者约翰尼斯·开普勒于1571年出生在德国的威尔德斯达特镇,恰好是哥白尼发表《天体运行论》后的第二十八年。哥白尼在这部伟大著作中提出了行星绕太阳而不是绕地球运转的学说。开普勒就读于蒂宾根大学,1588年获得学士学位,三年后获得硕士学位。当时大多数科学家拒不接受哥白尼的日心说。在蒂宾根大学学习期间,他听到对日心学说所做的合乎逻辑的阐述,很快就相信了这一学说” 在蒂宾根大学毕业后,开普勒在格拉茨研究院当了几年教授。在此期间完成了他的第一部天文学著作(1596年)。虽然开普勒在该书中提出的学说完全错误,但却从中非常清楚地显露出他的数学才能和富有创见性的思想,于是伟大的天文学家泰修·布拉赫邀请他去布拉格附近的天文台给自己当助手。开普勒接受了这一邀请,1600年1月加入了泰修的行列。泰修翌年去世。开普勒在这几个月来给人留下了非常美好的印象,不久圣罗马皇帝鲁道夫就委任他为接替泰修的皇家数学家。开普勒在余生一直就任此职。 作为泰修·布拉赫的接班人,开普勒认真地研究了泰修多年对行星进行仔细观察所做的大量记录。泰修是望远镜发明以前的最后一位伟大的天文学家,也是世界上前所未有的最仔细、最准确的观察家,因此他的记录具有十分重大的价值。开普勒认为通过对泰修的记录做仔细的数学分析可以确定哪个行星运动学说是正确的:哥白尼日心说,古老的托勒密地心说,或许是泰修本人提出的第三种学说。但是经过多年煞费苦心的数学计算,开普勒发现泰修的观察与这种三学说都不符合,他的希望破灭了。 最终开普勒认识到了所存在的问题:他与泰修、拉格茨·哥白尼以及所有的经典天文学家一样,都假定行星轨道是由圆或复合国组成的。但是实际上行星轨道不是圆形而是椭圆形。 就在找到基本的解决办法后,开普勒仍不得不花费数月的时间来进行复杂而冗长的计算,以证实他的学说与泰修的观察相符合。他在1609年发表的伟大著作《新天文学》中提出了他的前两个行星运动定律。行星运动第一定律认为每个行星都在一个椭圆形的轨道上绕太阳运转,而太阳位于这个椭圆轨道的一个焦点上。行星运动第二定律认为行星运行离太阳越近则运行就越快,行星的速度以这样的方式变化:行星与太阳之间的连线在等时间内扫过的面积相等。十年后开普勒发表了他的行星运动第三定律:行星距离太阳越远,它的运转周期越长;运转周期的平方与到太阳之间距离的立方成正比。 开普勒定律对行星绕太阳运动做了一个基本完整、正确的描述,解决了天文学的一个基本问题。这个问题的答案曾使甚至象哥白尼、伽利略这样的天才都感到迷惑不解。当时开普勒没能说明按其规律在轨道上运行的原因,到17世纪后期才由艾萨克·牛顿阐明清楚。牛顿曾说过:“如果说我比别人看得远些的话,是因为我站在巨人的肩膀上。”开普勒无疑是他所指的巨人之一。 开普勒对天文学的贡献几乎可以和哥白尼相媲美。事实上从某些方面来看,开普勒的成就甚至给人留下了更深刻的印象。他更富于创新精神。他所面临的数学困难相当巨大。数学在当时远不如今天这样发达,没有计算机来减轻开普勒的计算负担。 从开普勒取得的成果的重要性来看,令人感到惊奇的是他的成果起初差一点被忽略,甚至差点被伽利略这样如此伟大的科学家所忽略(伽利略对开普勒定律的忽视特别令人感到惊奇,因为他俩之间有书信往来,而且开普勒的成果会有助于伽利略驳斥托勒密学说)。如果说其他人迟迟不能赏识开普勒成果的重大意义的话,他本人是会谅解这一点的。他在一次抑制不住巨大喜悦时写道:“我沉湎在神圣的狂喜之中……我的书已经完稿。它不是会被我的同时代人读到就会被我的子孙后代读到——这是无所谓的事。它也许需要足足等上一百年才会有一个读者,正如上帝等了6000年才有一个人理解他的作品。” 但是经过几十年的历程,开普勒定律的意义在科学界逐渐明朗起来。实际上在17世纪晚期,有一个支持牛顿学说的主要论点认为开普勒定律可以从牛顿学说中推导出来,反过来说只要有牛顿运动定律,也能从开普勒定律中精确地推导出牛顿引力定律。但是这需要更先进的数学技术,而在开普勒时代则没有这样的技术、就是在技术落后的情况下,开普勒也能以其敏锐的洞察力判断出行星运动受来自太阳的引力的控制。 开普勒除了发明行星运动定律外,还对天文学做出了许多小的贡献。他也对光学做出了重要的贡献。不幸的是他在晚年为私事而感到忧伤。当时德国开始陷入“三十年战争”的大混乱之中,很少有人能躲进世外桃源。 他遇到的一个问题是领取薪水。圣罗马皇帝即使在较兴隆的时期都是怏怏不乐地支付薪水。在战乱时期,开普勒的薪水被一拖再拖,得不到及时的支付。开普勒结过两次婚,有十二个孩子,这样的经济困难的确很严重。另一个问题是他的母亲在1620年由于行巫术而被捕。开普勒花费了大量的时间设法使母亲在不受拷打的情况下获得释放,他终于达到了目的。 开普勒于1630年在巴伐利亚州雷根斯堡市去世。在“三十年战争”的动乱中,他的坟墓很快遭毁。但是业已证明他的行星运动定律是一座比任何石碑都更为久伫长存的纪念碑。 开普勒 找定了目标 伽利略的望远镜为哥白尼体系提供的论据是令人信服的,但毕竟还是间接的,只有定性意义。因为人们“坐地观天”,能够直接观察到的只是行星在恒星天球上垂直于视线方向的位移,而不是它们在空间的“真实”运动。要直接论证哥白尼体系,必须探求行星的“真实轨道”,并加以严格考证。 另外,哥白尼首创的日心体系还残留着托勒玫体系的若干成分,没有完全摆脱经院哲学思想的束缚,认为天体只能作简单的匀速圆周运动。因此,为了解释行星运行中存在较小的不均匀性,仍然保留了托勒玫的一部分本轮和偏心圆的设计。哥白尼的日心宇宙理论无疑是正确的,但他的体系是有缺陷的,很快就被推翻了。 竟哥白尼事业之功、揭开行星运动之谜的是不朽的德国天文学家约翰·开普勒 (1571~1630)。 开普勒出生在德国南部的瓦尔城。他的一生颠沛流离,是在宗教斗争(天主教和新教)情势中渡过的。开普勒原是个新教徒,从学校毕业后,进入新教的神学院——杜宾根大学攻读,本想将来当个神学者,但后来却对数学和天文学发生浓厚兴趣和爱好。 杜宾根大学的天文学教授米海尔·麦斯特林 (1550~1631)是赞同哥白尼学说的。他在公开的教学中讲授托勒玫体系,暗地里却对最亲近的学生宣传哥白尼体系。开普勒是深受麦斯特林赏识的学生之一,他从这位老师那里接受哥白尼学说后,就成为新学说的热烈拥护者。他称哥白尼是个天才横溢的自由思想家,对日心体系予以很高评价。 开普勒能言善辩,喜欢在各种集会上发表见解。因而引起学院领导机构——教会的警惕,认为开普勒是个“危险”分子。学院毕业的学生都去当神甫,开普勒则未获许可。他只得移居奥地利,靠麦斯特林的一点帮助在格拉茨高等学校中担任数学和天文学讲师及编制当时盛行的占星历书。 占星术是一门伪科学,开普勒不信这一套。他不相信天上那些星辰的运行和地上人类生息的祸福命运会有什么相干!他曾为从事此项工作自我解嘲说:“作为女儿的占星术若不为天文学母亲挣面包,母亲便要挨饿了。” 从那时起,开普勒开始从事研究他毕生最感兴趣,也是他尔后获得最大成就的问题了。 宇宙模型 开普勒平生爱好数学。他也和古希腊学者们一样,十分重视数的作用,总想在自然界寻找数量的规律性 (早期希腊学者称为和谐)。规律愈简单,从数学上看就愈好,因而在他看来就愈接近自然。他之所以信奉哥白尼学说,正是由于日心体系在数学上显得更简单更和谐。他说:“我从灵魂深处证明它是真实的,我以难以相信的欢乐心情去欣赏它的美。”他接受哥白尼体系后就专心探求隐藏在行星中的数量关系。他深信上帝是依照完美的数学原则创造世界的。 开普勒在他早期所著的《神秘的宇宙》(1597)一书里设计一个有趣的、由许多有规则的几何形体构成的宇宙模型。开普勒试图解释为什么行星的数目恰好是六颗,并用数学描述所观测到的各个行星轨道大小之间的关系。他发现六个行星的轨道恰好同五种有规则的正多面体相联系。这些不同的几何形体,一个套一个,每个都按照某种神圣的和深奥的原则确定一个轨道的大小。若土星轨道在一个正六面体的外接球上,木星轨道便在这个正六面体的内切球上;确定木星轨道的球内接一个正四面体,火星轨道便在这个正四面体的内切球上;火星轨道所在的球再内接一个正十二面体,便可确定地球轨道……照此交替内接 (或内切)的步骤,确定地球轨道的球内接一个正二十面体,这个正二十面体的内切球决定金星轨道的大小;在金星轨道所在的球内接一个正八面体,水星轨道便落在这个正八面体的内切球上。 开普勒也因循自亚里斯多德、托勒玫直至哥白尼以来的固有见解,没有跳出圆形轨道的框框。 这种设计得到的各个球的半径比率与各个行星轨道大小的已知值相当吻合。有规则的正多面体是具有相同平面的对称体。这种具有对称平面的多面体只能作出五个,因此开普勒确信太阳系的行星只有六颗。 这一“发现”给开普勒带来极大喜悦,他写道:“我从这个发现所得到的极度喜悦是无法用语言来表达的。我不怕任何麻烦,我不辞辛劳、日以继夜地进行计算,直到我能够看到是否我的假设符合哥白尼的轨道,或者是否我的喜悦要落空”。 开普勒模型的数学关系纵然如此美妙,但若干年后开普勒分析第谷的观测数据、制定行星运行表时,它们却毫无用处。开普勒就摒弃了它。 1598年奥地利暴发宗教冲突。天主教徒用凶残的惩罚来恫吓开普勒。他被迫离开奥地利,逃到匈牙利隐蔽起来。不久,他接到在布拉格路德福国王宫庭内任职的第谷的邀请,去协助整理观测资料和编制新星表。开普勒欣然接受,1600年携眷来到布拉格,任第谷的助手。 具有讽刺意味的是,这两位学者,一个始终是哥白尼体系的反对者,另一个则是该体系的衷心拥护者。但他们毕竟撮合在一起了,并且戏剧般地成为天文学史上合作的光辉典范! 这是开普勒最快乐的时代,他不再为生活而发愁,专心从事天文学研究。然而很不幸,他们相处没有多久,第谷便于第二年(1601)去世。开普勒遭到一次很沉重的打击。这位被称为“星学之王”的天文观测家把他毕生积累的大量精确的观测资料全部留给了开普勒。他生前曾多次告诫开普勒:一定要尊重观测事实! 开普勒继任第谷的工作,任务是编制一张同第谷记录中的成千个数据相协调的行星运行表。虽然他得到“皇家数理家”的头衔,但宫庭却不发给他应得俸禄,他不得不再从事星相术来糊口。 第谷的观测记录到了开普勒手中,竟发挥意想不到的惊人作用,使开普勒的工作变得严肃起来。他发现自己的得意杰作——开普勒宇宙模型,在分析第谷的观测数据、制订行星运行表时毫无用处,不得不把它摒弃。不论是哥白尼体系、托勒玫体系还是第谷体系,没有一个能与第谷的精确观测相符合。这就使他决心查明理论与观测不一致的原因,全力揭开行星运动之谜。为此,开普勒决定把天体空间当做实际空间来研究,用观测手段探求行星的 “真实”轨道。 巧夺天工 开普勒要解决的问题包括两方面:第一,用什么方法测定行星(包括地球)运动的“真实”轨道,如同观测者能从“天外”看行星绕太阳运行一样;第二,分析行星运动遵循什么样的数学定律。 如今已很少有人想到,开普勒如何从行星的使人眼花缭乱的视行中推出它们的“真实”轨道?只要想到人们永远不可能看到行星的真实运动,而只能从运动着的地球上看到它们在天空的什么方向,就知道问题困难了。倘使行星所作的是简单的匀速圆周运动,从地球上看去,还比较容易地察觉这种运动该是怎样的;可是实际情形比这要复杂得多,而且地球本身同样是以某种未知方式绕太阳运动。这就使问题变得无比复杂和困难了。 开普勒用一个绝妙方法把这种杂乱无章的现象理出一个完整清楚的头绪来。他同哥白尼一样,敏锐地领悟到,“要研究天,最好先懂得地”,他也把着眼点放在地球上,力图先摸清地球本身的运动,然后再研究行星的运动。 但是这样做的时候,并没有排除行星存在的必要性。假如天空中只有太阳和恒星而没有别的行星存在,那要找出地球的“真实”轨道,还是办不到的。因为在那种情形下,除了太阳的周年视行外,其他就没有什么东西可以从经验上来确定。它虽然也能帮助我们确定地球绕太阳运行的方式,譬如地球向径 (日地连线)在一个相对恒星是静止的平面(黄道面)上运动,这种运动的角速度在一年中呈现有规律的变化……。但是,光知道这些并没有多大用处,关键是必须确定地球同太阳之间的距离在一年中是怎样变化的?只有当人们弄清这种变化后,才能确定地球轨道的真实形状及它的运行方式。 其实,开普勒所用的方法就是普通的三角测量法。 在大地测量工作中,常常要测定那些由于某种自然障碍而无法直接到达的目标的距离。假定需要测定A地到对岸塔C的距离,因A、C两地被大河阻隔,无法直接去测量这段距离的长度。为了解决这个困难,观测者可在河的这岸另择一点B,AB的距离是可以直接丈量的。这段经过选定的、已知其长度的线段AB,用测量学的术语来说,叫做“基线”。基线确定后,可在它的两端用测角仪分别测定A、B两角的大小。于是,在三角形ABC中,已知两角大小和它们所夹的边 (基线)长,三角形的其他角和边,就可以计算出来。应用这个简单方法可以求得无法达到的目标的距离。 实际上,天文学家们也是用这个方法来测定天体距离的。只不过这个问题对天文学家说来更加困难些,因为天文学家们要布设一条“基线”不那么容易。开普勒所遇到的正是这个困难。 开普勒要测定地球(在其轨道上)与太阳的距离。在这里,太阳好比是上述例证中的A地,地球则是河对岸的那座塔C。为了布设“基线”,还需要另找一个定点 B。可是,在行星系统里,除了太阳是唯一“静止”的中心天体外,再也找不出第二个这样的“定点”。这要由开普勒另行觅取。 我们设想在地球轨道平面的某处有一盏明亮的天灯M,它有足够的明亮度,并且永远悬挂在那里,以使地球上的观测者在每年任何日期都能看到它;又假定这灯距太阳比地球还要远些。如果具备这些条件,它就成了我们所需要的第个定点。太阳与灯的连线就是我们所要布设的“基线”。借助这样一盏灯,就能用下述办法来测定地球的轨道。 譬如,每年都会有这样一个时刻,地球 (E)正好在太阳(S)和灯(M)的连线上。这时,从地球上来看灯,我们的视线EM就会同SM(太阳~灯)重合,我们可以把后者在天空中的位置 (它指向某一恒星)记录下来。 以后,在另一个时刻,地球运行到轨道上的另一位置E’,这时它同太阳和那盏灯的位置形成一个三角形SE’M。 在这个三角形中,SM边是事先选定的“基线”;e角的大小可以从地球上同时观测太阳和灯M来确定;S角就是地球向径(SE”)同基线 SM所夹的角,其大小也可以通过对恒星的观测来确定。有了这些已知条件,便可以得知三角形SE’M中SE”的距离,或者说地球E’相对于基线SM的位置完全可确定。 因此,只要在纸上任意画一条基线SM,凭着我们观测到的e和S的角度,就可以作出三角形SE’M来。我们可以在一年中经常这样做,每次都会在纸上得到地球E’对于那条基线SM的不同位置,并且给它们逐个注上日期,然后把这些点连成曲线……。这样,我们就从经验上确定了地球的轨道。虽然其大小还是相对的,然而却是“真实”的。 可是从哪里去找这盏灯呢?要知道行星系统里除了中心天体——太阳外,所有能看得见的客体都不是静止的,它们的运动在细节上都是未知的。开普勒毫不费事地找到这盏灯。它就是火星,一盏天上的“红灯”。 人们不禁要问:火星不也是在运动吗? 一点不错,火星确是在运动。然而聪明的开普勒想出一条“动中取静”的妙计。那时人们对火星的视运动已经知道得非常清楚,它绕太阳运行的周期 (一个“火星年”)是精密地测定了的。既然它是在闭合的轨道上运行,就总会有这么一个时刻,即太阳、地球和火星处在同一直线上,而且每隔一个“火星年”之后,它总又要回到天空的同一位置上来。因此,火星虽然是动的,但在某些特定的时刻,SM总是表现为同一条基线;而地球呢?在这些时刻,它会到达自己的不同位置。这时,对太阳和火星同时进行观测,就成为开普勒测定地球轨道的手段;火星这时就起着所设想的那盏灯的作用。 “天公斗巧乃如此,令人一步千徘徊”。开普勒就是这样以令人赞叹的巧妙手法把地球轨道的形状测了出来。地球的轨道一经测定,地球及其向径 (SE)在任何时刻的实际位置和距离变化,也就成为已知条件。反过来,以地球向径作为基线,从观测数据中推求其他行星的轨道和运动,对开普勒来说不再是太困难的事了! 8分误差改变整个天文学 行星轨道从经验中算出来了,下一步要弄清楚的问题是行星运动究竟遵循什么数学定律? 乍看,第一个问题解决后,搞清楚第二个问题该是轻而易举的事。然而你马上就会看到,要从经验的数据里推出运动定律要比解决第一个问题艰巨得多。 开普勒首先需要了解行星轨道所描出的曲线的几何特征是什么?为此,他必须先作某种假设,然后把它用到一大堆数字上去试试,看它是否能同第谷的数据吻合。如果不是,再找另外的假设进行探索,直到合乎观测事实为止。 开普勒的目光首先盯住火星。这是因为第谷的数据中对火星的观测占有最大篇幅。恰好,就是这个行星的运行与哥白尼理论出入最大。开普勒按照传统的偏心圆来探求火星的轨道。他作了大量尝试,每次都要进行艰巨的计算。在大约进行了70次的试探之后,开普勒才算找到一个与事实相当符合的方案。使他感到惊愕的是,当超出他所用数据的范围继续试探时,他又发现与第谷的其他数据不符。火星还是不听他的摆布……。 开普勒诙谐地写道:“我预备征服战神马尔斯,把它俘虏到我的星表中来,我已为它准备了枷锁。但是我忽然感到胜利毫无把握……,这个星空中狡黠的家伙,出乎意料地扯断我给它戴上的用方程连成的枷锁,从星表的囚笼中冲出来,逃往自由的宇宙空间去了。” 开普勒计算出来的火星位置和第谷数据之间相差8分,即133度 (这个角
143 评论(12)

相关问答