期刊问答网 论文发表 期刊发表 期刊问答

数据分析方面的论文题目推荐及理由英文

  • 回答数

    6

  • 浏览数

    332

zhulvqi123
首页 > 期刊问答网 > 期刊问答 > 数据分析方面的论文题目推荐及理由英文

6个回答 默认排序1
  • 默认排序
  • 按时间排序

dx2011

已采纳
毕业论文选题理由:选题的学科性质、理论意义及实践意义;国内研究现状的分析。研究方案包括:研究内容、研究中所要突破的难题、拟采取的研究方法,有何特色与创新之处以及与选题有关的参考文献等内容。选题依据就是你论文依托的背景及显示意义,同时通过论文研究,解决问题把上面这些内容总结一下就可以了。扩展资料:从文体而言,它对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。论文题目由教师指定或由学生提出,经教师同意确定。均应是本专业学科发展或实践中提出的理论问题和实际问题。通过这一环节,应使学生受到有关科学研究选题,查阅、评述文献,制订研究方案,设计进行科学实验或社会调查,处理数据或整理调查结果,对结果进行分析、论证并得出结论,撰写论文等项初步训练。

数据分析方面的论文题目推荐及理由英文

249 评论(10)

reokyyy

题目:面向网络化制造的CRM后台管理系统的设计与实现摘要:本设计是江西教育厅科技项目“面向网络化制造的客户关系管理系统研究“研究内容的一部分。在网络化制造环境下,处于同一网络的制造企业之间的关系管理变得越来越重要,要构造一个完整的、有效率的制造网络就必需开发相应的成熟的客户关系管理系统。 系统的设计思想是在支持前台数据维护的基础上,着重于客户数据的分析,通过对客户信息,交易信息的分析得出有得于公司决策的数据。同时注重体现网络化制造的跨企业合作、信息集成的思想。主要模块包括:对前台信息的管理、呼叫中心、客户跟踪、客户信息分析、交易信息分析、统计报表、销售预测。 关键词:网络化制造 客户关系管理 系统设计 后台管理 Title: Networked Manufacturing Oriented CRM background management system Design and Implementation Abstract: The design of Jiangxi Science and Technology Office of Education project "Networked Manufacturing Oriented Customer Relationship Management System" as part of the In networked manufacturing environment, in the manufacture of the same network of relationship management between enterprises is becoming increasingly important, it is necessary to construct a complete and efficient manufacturing network corresponding to the maturity necessary for the development of customer relationship management System thinking is the future in support of the basis of data maintenance, with a focus on customer data analysis, through to customer information, transaction information, something the company analysis of data in decision- At the same time, reflect the emphasis on inter-network-based manufacturing businesses, the idea of information The main modules include: the future of information management, call center, customer tracking, analysis of customer information, transaction information analysis, statistical statements, sales Key words: network-based customer relationship management system to create the background to the management of design
228 评论(12)

183514366

出现问题,研究意义等
203 评论(13)

zy0227

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
229 评论(9)

whatfor

寿险行业数据挖掘应用分析  寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。  数据挖掘  数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。  目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。  商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。  行业数据挖掘  经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。  根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。  针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。  挖掘系统架构  挖掘系统包括规则生成子系统和应用评估子系统两个部分。  规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统根据效果每月动态生成新的模型。  应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。  目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。  实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
131 评论(9)

Eureka7

回答 内容如下:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融 [鲜花][鲜花]
295 评论(10)

相关问答