期刊问答网 论文发表 期刊发表 期刊问答

关于数学发展史的论文

  • 回答数

    3

  • 浏览数

    168

19881227
首页 > 期刊问答网 > 期刊问答 > 关于数学发展史的论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

drwatermelon

已采纳
中国:数学史最长的国家中国数学发展史,自公元前2700年起,到今日为止,已有4000多年的历史日本著名数学家三上义夫在《中国算学的特色》中说:从数学发展史来看,一个国家有如此长久的数学史,这是世界其他国家所不能比拟的世界其他文明古国的数学史,希腊自公元前6世纪至公元4世纪,不过1000年左右;阿拉伯仅限于公元8世纪至公元十二、三世纪;日本的数学发达是在德川时代(1603~1867),大约只有两三百年;至于现在欧洲这些国家,公元10世纪以后才有数学史中国数学史可分为五期第一期,自公元前2700年至公元前200年,为上古期。善于数学的人据说有伏羲氏、黄帝、隶首以及倕等人,主要成就有结绳、记数、规矩画图、九九乘法口诀、十进法以及数学教育等第二期,公元前200年至公元1000年,为中古期,代表人物有魏朝刘徽、南北朝祖冲之、祖暅等人主要成就可以概括在“算经十书”,即《九章算术》《海岛算经》《孙子算经》《王曹算经》《张丘建算经》《夏侯阳算经》《周髀算经》《五经》《缉古算经》《缀术》中后来,因《缀术》一书散失,就用《数学记遗》代替“算经十书”研究的主要内容有分数的应用,整数勾股形的计算,开平方法与方程的应用,平面和空间图形的计算,三等数法的输入等第三期,自公元1000年到1367年,这一时期数学最发达代表人物有贾宪、秦九韶、李治、杨辉、郭守敬、朱世杰等,主要成就有高次方程及高次方程组的解法,二项式展开项系数三角形的研究,已知三边如何求三角形的面积等第四期,自公元1367年到公元1750年,主要成就有珠算发明、笔算的应用等徐光启、薛风祚、王锡阐、梅文鼎等人翻译了几何、代数、三角书籍,介绍引用了对数表、三角函数表第五期,自公元1750年到1912年,主要成就有“算经十书”的传刻,开展对宋朝和元朝数学的研究和讨论以及新旧数学的分类研究等 700来字(够了)

关于数学发展史的论文

357 评论(13)

evelynlian

古代发展史 秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现代中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算术书》。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造。现代的史料指出,中国古代数学书《九章算术》的分数运算法则是世界上最早的文献。现代发展史现代数学的阶段,从时间来划分应从19世纪末到现在。这不仅是一个时间问题,也是研究数学方法的问题,主要是“集合论”的基本概念和方法不仅渗透到现代数学各个分支,也渗透到一些自然科学领域。由于它的创立发展,现代数学研究的内容,方法发生了翻天覆地的变化,这是现代数学与以往数学的区别的重要特征之一,其次,由于第二次世界大战以后,科学技术突飞猛进,原子能的利用,电子计算机的发明,空间技术的发展,促进了现代数学的发展,其速度之快,抽象程度之高,以及应用广泛和深入等方面远远超过了以往任何时期。新中国成立后,中国现代数学的发展进入一个新的阶段。新中国的数学事业经历了曲折的道路而获得巨大的进步,这种进步主要表现在:建立并完善了独立自主的现代数学研究与教育体制;形成了一批研究门类齐全,并拥有一批学术带头人的雄厚的数学研究队伍;取得了丰富的和先进的学术成果;其中达到国际水平的成果比例不断提高。目前,我国随着改革开放的逐步深入,随着经济的迅速发展为科学研究提供了物质基础,国家对数学研究也非常重视,初步加大科研的投入,在这样的良好环境里,最关键的就是培养跨世纪的人才,就是房子差一点,图书资料少一点,仍能创造第一流成果,对优秀青年数学家在工作、职称、生活及科研条件方面给予相应的优惠待遇,这样,他们就能迅速成长,也能吸引海外优秀学子回国。作为师范学校,它是一个培养人才的摇篮,而对现代数学的迅速发展,要实现使我国成为“21世纪的数学大国”的伟大目标,必须进行教育改革;作为大学教师必须掌握现代数学知识和用现代数学思想武装同学们的头脑,才能培养出适应现代经济发展需要的人才,努力拼搏,中国数学必将在新世纪中取得更加辉煌的成就。
231 评论(11)

gyq625

刘 徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为1415926<π<1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈1415926)密率22/7(≈14),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 明安图】(1692——1765) 清代蒙古族杰出数学家、天文学家。字静庵。蒙古正白旗(今内蒙古锡林郭勒盟正白旗)人,为蒙古族人。康熙九年(1670),被选入钦天监学习天文、历象和数学
139 评论(11)

相关问答