期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    297

qibingtuan
首页 > 期刊问答网 > 期刊问答 > 数学论文1000字左右五年级上册

4个回答 默认排序1
  • 默认排序
  • 按时间排序

恒2012

已采纳
巧赢硬币记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

数学论文1000字左右五年级上册

121 评论(12)

来梦2580

基础较差的学生在解数学题时往往容易出错,做错的原因不外乎两种:一是对概念的理解不透彻、不熟练;二是粗心大意而我们教师都很注重对前一种出错的预防,却对后一种出错讲得少如何才能帮助学生预防粗心大意而导致的错误呢?    一、活用动词、引起注意、预防出错    在课堂上适当活用动词,增加感情色彩,可以增加学生记忆,预防出错例如在讲授用配方法解一元二次方程时,对于方程x2+6x+7=0,首先要把常数项移到右边我在上课时这样讲解:我们把含x的项留在左边,把不含x的项“赶到”等式的右边学生听到“赶到”两字很新鲜,忍不住笑起来这样一来学生在笑中学到了知识,牢固掌握了配方法再例如在讲解补集的概念时,  不管我如何讲解都有部分学生不能理解,求不出补集后来我换了另一种方式讲解:在图1中,集合A的图1补集就是把集合A从全集U中“挖”出来后剩下的部分这个“挖”字既形象,又生动,从而使学生牢固掌握了补集的概念    二、抓关键词、理清概念、预防出错    在数学概念的教学中,如能抓住概念中的关键词,可以起到事半功倍的效果例如在函数的教学中,讲完映射概念后,可给出这样一道题:  给出下列四个对应:    其中是映射的序号是()    学生看到题目十分茫然,只有部分学生选了(4),其他三个不知如何判断按道理,刚讲完映射的概念,马上做这题应该不会出现这种情况于是我要求学生再看一次概念,注意抓住两个关键词:“任意”“唯一”(映射概念是:设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射)“任意”就是在集合A中任何一个元素,随意找一个元素,在集合B中都有“唯一”的,有且只有一个元素,只能是一个元素与之对应题目(2)中的集合A内的2,4没有对应,不符合“任意”;(3)中集合B有3,4与1对应,不符合“唯一”;而(1)(4)符合两个关键词,因此选(1)(4)后来我用同样的方法讲解函数的概念(函数概念是:设A,B是两个非空的数集,如果按某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数),同样是抓住关键词“任意”、“唯一”并让学生做下列练习:  下列图形中表示函数图象的是()    学生充分抓住关键词“任意”、“唯一”,从而都能准确地选中D  三、引用幽默、加深记忆、预防出错 在课堂上适当引用幽默、有趣的比喻可以增强学生的记忆,预防出错例如在讲解移项变号这个知识点时,不管如何强调移项要变号,但在解题时都有相当多的学生移项忘记变号后来我打了一个比喻:把等号两边比喻成男女厕所,“+”号比喻成男人,“-”号比喻成女人;“+”号移到另一边,就像男人进女厕所,必需变成女人才能入厕,即“+”必需变成“-”才能到另一边同理“-”号移到另一边,就像女人进男厕所,必需变成男人才能入厕,即“-”必需变成“+”才能到另一边把“移项变号”问题类比为“男女厕所”问题,学生一听就哈哈大笑这一笑,便记忆深刻(每当移项时仍笑声依旧),这一笑,就掌握了移项法则和要领虽然这个比喻不怎么恰当,但却事半功倍  四、巧用括号、理清头绪、预防出错  在数学教学中,在不改变数学概念和数学公式本质的前提下,适当添加括号,可以使学生减少出错的几率,也可以起到预防出错的作用例如一元二次方程的求根公式:x=-b±b2-4ac2a,在解方程6x2-13x-5=0时,运用求根公式求解,把a=6,b=-13,c=-5代入公式,学生经常算得:  x=-13±(-13)2-4×6×(-5)2  (正确的应是:  x=-(-13)±(-13)2-4×6×(-5)2),因此我把公式添加括号变形为  x=-(b)±b2-4ac2a,这样一来有力地预防了错误的出现又如我发现很多学生在解方程  2x-66-5x+18=1时,去分母后出现  4×2 x - 6 - 3×5 x + 1=24的错误,为了有效地防止学生再出现这种现象,我想出了一个有效的解决办法,就是去分母时要求学生必须先把分子加上括号后,即  (2x-6)6-(5x+1)8=1  ,再去分母,即4(2x - 6)- 3(5x + 1)=再例如在讲解整式的乘法时有这样一道题:运用乘法公式计算  (x+2)2-(x-2)2时,学生做题过程是  (x+2)2-(x-2)2=x2+4x+4-x2-4x+4=8  ,出错的原因往往是忘记(x-2)2运用乘法公式展开后,因前面是“-”号,还应加括号即  (x+2)2-(x-2)2=x2+4x+4-(x2-4x+4)为了有效防止类似情况发生,我要求学生做这类题时先用中括号把(x-2)2括起来即(x+2)2-[(x-2)2],然后再运算(x+2)2-[(x-2)2]=x2+4x+4-(x2-4x+4)经过这样的要求后,学生几乎再也没有出现类似的错误   总之,在数学教学中如果能适当活用“动词”、抓“关键词”、引用 “幽默”和巧用 “括号”,对预防学生解题出错能起到事半功倍的效果
318 评论(8)

hwmyhxn

我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。 传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手: 一、用新颖有趣的教法诱发学习兴趣 苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。 二、用数学本身的内在力量唤起学习兴趣 布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。 三、用数学的应用价值调动学习兴趣 数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。 四、用学习的成功感增添学习兴趣 心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。 总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。
269 评论(15)

AI20070508

数学小论文大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。有趣的鸡兔同笼,古怪的数学黑洞,在这之中我发现了一些奇妙的数学规律。记得我有一次在做奥数题的时候遇到了一道方程题18X=20。当我用20除以18时发现得数是111……,是一个纯循环小数。后来我写了分数九分之十。写完答案之后,我看着这道题的答案时,我就猜测:当被除数是整十数时,如果用这个数减去其十位上的数字,然后再用原来的数除以减得的数,得数就是1111……或分数中的九分之十。当想到这时,我有些犹豫:这个猜测准不准确呢,不会有错吧?我半信半疑的带着这个疑问,开始用其他数来进行验算:用30先减去十位上的3等于27,再用30除以27。这时我发现得数还真是111……和九分之十。后来我又分别用70和60来证明我的说法是否正确,果真我的想法是正确的,改成事实证明我的想法是正确的。在此之后,我又继续用这种规律来验算整百位的题,又发现得出来的数是0101……或九十九分之一百,依照这种规律,那么整千位的数就可以得出001001……和九百九十九分之一千,整万位就可以得出00010001……或九千九百九十九分之一万……在这奇妙的数学王国里,只要我们不断努力探索和发现,就能发现不少有趣的同时不为我们熟悉的数学问题。猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应当在听老师讲课时注意向老师学习该种思维方法,同时,还应该在平常的生活中尝试自我探索。
80 评论(11)

相关问答