Gg.0220
性质1函数和(差)的二重积分等于各函数二重积分的和(差),即∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ性质2被积函数的常系数因子可以提到积分号外,即∫∫kf(x,y)dσ=k∫∫f(x,y)dσ(k为常数)性质3如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ推论∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ性质4设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,则mσ≦∫∫f(x,y)dσ≦Mσ性质5如果在有界闭区域D上f(x,y)=1,σ为D的面积,则σ=∫∫dσ性质6二重积分中值定理设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得∫∫f(x,y)dσ=f(ξ,η)●σ 
高等数学重积分的内容:二重积分的定义及其几何与物理意义、利用几何意义计算二重积分、二重积分的基本性质、利用直角坐标计算二重积分的基本方法、利用轮换对称性计算二重积分、利用极坐标计算二重积分的基本方法、极坐标系与直角坐标系下二次积分的相互转化。计算三重积分的投影法和截面法、三重积分换元公式简介及柱坐标系与球坐标系复习、利用球坐标计算三重积分的方法和典型例题、利用重积分计算立体体积、利用二重积分计算曲面面积、利用二重积分计算平面图形的面积、利用重积分计算物体对质点的引力、质心的概念及质心的坐标公式。扩展资料:多重积分问题的解决在多数情况下依赖于将多重积分转化为一系列单变量积分,而其中每个单变量积分都是直接可解的。对于三重积分, 可以把被积函数看作密度,则其为空间中一立体的质量,想象一下大家切土豆丝,相当于把三重积分转化为了三个"定积分"的累次积分;再想象一下切片面包,相当于把三重积分转化为了一个“定积分”和一个“二重积分”的累次积分。对于二重积分, 可以把被积函数看做密度,则其为平面区域的质量。想象一下大家常见的炒饼丝,可以看到这样就把二重积分转化成了两个"定积分"的累次积分了。参考资料来源:百度百科-多重积分