期刊问答网 论文发表 期刊发表 期刊问答

数学论文450字

  • 回答数

    5

  • 浏览数

    247

半岁音书
首页 > 期刊问答网 > 期刊问答 > 数学论文450字

5个回答 默认排序1
  • 默认排序
  • 按时间排序

oifi2310

已采纳
娱人娱己 该法规及附件一番热闹和刚才发的话说的明白过,是第八次,十八春,是不错的市场的水泥厂但是才半年市场

数学论文450字

130 评论(15)

津津217

论小学生解题能力什么是解题能力?构成解题能力的基本要素有哪些?它是怎样形成发展的?长期以来,正是由于对这些基本理论问题无法作出明确回答,才使得应用题教学难以有突破性的发展,使得应用题教学心理研究长期陷于困顿。显然,要改革当前应用题教学体制,优化应用题教学系统,推进应用题教学心理研究,就必须首先在理论上揭示小学生解题能力的实质、构成要素及形成发展规律。本文试作探讨。长期以来,应用题教学心理研究虽对解题能力的实质没有作出明确回答,但纵观哲学与心理学文献,有关能力问题的讨论已有了相当长的历史。这些有关一 般能力的基本观点,影响着人们对解题能力的基本看法。人们关于解题能力实质的日常看法,大致可以分为四类。1.因素论观点。把解题能力看作是某些一般能力因素(如理解能力、分析能力、综合能力、运算能力等)的综合体,试图通过对解题能力的因素分析或经验分析,探讨影响解题活动的一般能力因素。2.先验论观点。解题能力是与个体经验无关,并先于个体经验而存在的实体,把能力看作是主宰活动的非物质心理实体的官能,或把它看作是遗传而来的个人禀赋。经验论观点。经验论观点与先验论观点相对,解题能力是个体在解题过程中习得的知识经验,提出解题能力即解题知识。4.“合金”论观点。从对能力形成发展条件的研究出发,认为解题能力是先天秉赋和后天解题活动成果的融合物(亦即“合金”)。上述四种观点能否正确反映解题能力的实质呢?本文认为,首先,解题能力属于特殊能力。根据唯物辩证法,一般能力虽然大致地概括了特殊能力,但却不能完全代替特殊能力。因素论观点用一般能力来界定特殊能力的本质,否认了特殊能力的特殊本性及其形成发展的特殊规律,因而并不能正确地揭示解题能力的实质。该论点反映在教学上,实质是形式训练说的翻版,导致了教师用一般能力的训练取代解题能力这一特殊能力的培养。第二,解题能力在本性上是调节解题活动的个体心理特性,按照辩证唯物主义观点,个体心理特性虽不完全排斥生理因素或先天因素对能力形成、发展的影响作用,但究其本性则是人类有机体与环境相互作用过程中,通过主体能力的反映活动,在头脑里构建起来的心理形成物,属于经验范畴。先验论观点把解题能力看成是先天的、固定不变的实体,夸大了遗传在能力发展中的作用,因而常常把学生解题能力的暂时低下看成是该学生无法提高能力的根据,这种唯心主义和形而上学论断在教学中是十分有害的。第三,解题能力作为个体心理特性,对解题活动的调节应该具有一定的稳定性。经验论观点不仅抹煞了解题知识与技能的不同调节作用,缩小了能力实质的内涵,而且忽视了能力作为活动调节机制的稳定性能,把能力简化成了知识实在。该观点在教学中表现为教师以解题知识的传授代替对学生解题能力的培养,直接影响了应用题教学的效能。第四,对能力形成、发展条件的认识不同于关于能力实质的观点,前者要解决的是影响能力的形成、发展因素的问题,而后者要解决的是能力是什么的问题。“合金”论观点虽然较好地解决了能力形成、发展的条件问题,却并没有揭示出解题能力的真正实质。那么,解题能力的实质到底是什么呢?我认为,解题能力是解题活动稳定的调节机制。就其本质而言,是类化了的解题经验,即概括化、系统化的解题知识和解题技能。我把这一对解题能力实质的基本观点简称为类化经验观点。解题能力实质的类化经验观大致包含了以下几个含义:①从本性上说,小学生解题能力是一种个体心理特性,因而在原则上属于经验范畴;②从功能上说,小学生解题能力是解题活动的内在调节机制;③从结构上说,它是解题知识和技能组成的经验实体;④从性能上说,它对解题活动的调节具有稳定性,因而是一种类化经验,即概括化、系统化的解题经验;⑤从类别上说,它是解题这一特殊活动的内在调节机制,属于特殊的数学能力。要全面认识解题能力的实质,还必须看到,小学生解题能力并非是单一的类化经验,而是一个由不同层次和不同类型解题能力组成的层级系统。在这个层级系统中,按所调节的活动对象的复杂性和数量性质的不同,包括简单应用题、复合应用题和分数应用题三个不同层次的解题能力。这些能力在经验的概括水平上存在明显差异。按所调节活动类型的不同,每一层次的解题能力又包含了算术法和代数法两种不同类型的解题能力,它们在经验的概括水平上大致相仿,但在经验的构成要素上却有所不同。这些不同层次、不同类型的解题能力,究其实质仍是类化经验,只是经验的含义有所变化。因此,解题能力的层级系统实质是类化经验的层级系统。在树立了解题能力的类化经验观和层级系统观的基础上,为深化解题能力的认识,为应用题教学改革提供更多、更具体的指导,还必须对能力的构成要素作进一步的分析,确定构成能力的具体知识和技能成分。
262 评论(8)

点点星

今天下午,老师照例发了一张试卷。其中有一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
332 评论(8)

kaka2134

数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域 赞同
134 评论(12)

活泼乐观

巧 分 苹 果 在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。怎么样,数学中的趣味还是很多的吧!
172 评论(14)

相关问答