bobo332
获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。 
楼上说的对,目前国内基本就是hadoop生态做分布式存储,实时计算框架的话spark和flink。基本都是开源技术,可以多关注一下官方了解,也可以关注一些好的微信公众号如“自学帮”,里边都有各个组件的详细说明
这个只能说主流技术吧,不能说核心技术;现在国内很多公司大数据方面的主要使用时Hadoop生态圈内的技术,比如Hadoop、yarn、zookeeper、kafka、flume、spark 、hive、Hbase ,这些事使用比较多的,并不是说就只有这些技术,而且只是应用技术方便的,还有数据分析方向的等等。所以你这个问题首先就有问题,大数据是一个方向领域,就好比你问饮食是什么,饮食有哪些方面一样。
想学习大数据技术,是不是首先要知道大数据技术有哪些呢?也好知道自己未来应该往哪个方向发展,应该重点学习哪些知识? 抽象而言,各种大数据技术无外乎分布式存储 + 并行计算。具体体现为各种分布式文件系统和建立在其上的并行运算框架。这些软件程序都部署在多个相互连通、统一管理的物理或虚拟运算节点之上,形成集群(cluster)。因此不妨说,云计算是大数据的基础。下面介绍几种当前比较流行的大数据技术:HadoopHadoop无疑是当前很知名的大数据技术了。2003年到2004年间,Google发布了关于GFS、MapReduce和BigTable三篇技术论文(这几篇论文成为了后来云计算、大数据领域发展的重要基石)。当时一位因公司倒闭赋闲在家的程序员Doug Cutting根据前两篇论文,开发出了一个简化的山寨版GFS – HDFS,以及基于其的MapReduce计算框架,这就是Hadoop当初的版本。后来Cutting被Yahoo雇佣,得以依赖Yahoo的资源改进Hadoop,并将其贡献给了Apache开源社区。简单描述Hadoop原理:数据分布式存储,运算程序被发派到各个数据节点进行分别运算(Map),再将各个节点的运算结果进行合并归一(Reduce),生成结果。相对于动辄TB级别的数据,计算程序一般在KB – MB的量级,这种移动计算不移动数据的设计节约了大量网络带宽和时间,并使得运算过程可以充分并行化。在其诞生后的近10年里,Hadoop凭借其简单、易用、高效、免费、社区支持丰富等特征成为众多企业云计算、大数据实施的首选。StormHadoop虽好,却有其“死穴”其一:它的运算模式是批处理。这对于许多有实时性要求的业务就无法做到很好的支持。因此,Twitter推出了他们自己的基于流的运算框架——Storm。不同于Hadoop一次性处理所有数据并得出统一结果的作业(job),Storm对源源导入的数据流进行持续不断的处理,随时得出增量结果。SparkHadoop的另一个致命弱点是:它的所有中间结果都需要进行硬盘存储,I/O消耗巨大,这就使得它很不适合多次迭代的运算。而大多数机器学习算法,恰恰要求大量迭代运算。2010年开始,UC Berkeley AMP Lab开始研发分布式运算的中间过程全部内存存储的Spark框架,由此在迭代计算上大大提高了效率。也因此成为了Hadoop的强有力竞争者。NoSQL 数据库NoSQL数据库可以泛指非关系型数据库,不过一般用来指称那些建立在分布式文件系统(例如HDFS)之上,基于key-value对的数据管理系统。相对于传统的关系型数据库,NoSQL数据库中存储的数据无需主键和严格定义的schema。于是,大量半结构化、非结构化数据可以在未经清洗的情况下直接进行存储。这一点满足了处理大量、高速、多样的大数据的需求。当前比较流行的NoSQL数据库有MongoDB,Redis,Cassandra,HBase等。NoSQL并不是没有SQL,而是不仅仅有(not only)SQL的意思。为了兼容之前许多运行在关系型数据库上的业务逻辑,有很多在NoSQL数据库上运行SQL的工具涌现出来,典型的例如Hive和Pig,它们将用户的SQL语句转化成MapReduce作业,在Hadoop上运行。大数据产业已进入发展的“快车道”,急需大量优秀的大数据人才作为后盾。能够在大数据行业崛起的初期进入到这个行业当中来,才有机会成为时代的弄潮儿。
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。 从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。 当下我国大数据研发建设应在以下四个方面着力 一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。 二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。 三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。 四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。