期刊问答网 论文发表 期刊发表 期刊问答

小小数学家科普小论文

  • 回答数

    5

  • 浏览数

    150

murongleaf
首页 > 期刊问答网 > 期刊问答 > 小小数学家科普小论文

5个回答 默认排序1
  • 默认排序
  • 按时间排序

szsplne

已采纳
《冰雹猜想有规可循》冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。你或许会好奇的说找个反例不就行了,是的,全球计算机在没日没夜的找,可惜都没找到反例。对于这个极其简单又无聊又超有趣的问题,别说常人,数学家几乎都不敢专职研究并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe's rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3^n-1)中的数,3^n-1再变为更小的3^n-1并最终变为8回到1。如11必变到26(3^3-1),再变为更小的8(3^2-1),并回到1;另外27是个极其强悍的数字,按照规则77步才能到达巅峰值9232(27的342倍多),具有同样步数的2的幂为2的111次方,很惊人吧!其变化更是起伏不定,但按照白言规则却显而易见:27必会转变到3^n-1(242),定会降至3^2-1(8)并回到1。真是太神奇了。这个问题很有趣吧,还超简单,感兴趣的可以自己试试哦。

小小数学家科普小论文

140 评论(11)

foxliqing

1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球(GHHardy)教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」(1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」Top
126 评论(11)

譩……

1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家. 2,苏菲娅•柯瓦列夫斯卡娅苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.3,女数学家诺德1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”4,欧几里德我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父"1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁 5,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
222 评论(12)

dublin111

一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
288 评论(10)

zhaoweiu

华罗庚 出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师. 少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色. 3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子 聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽. 这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.
134 评论(14)

相关问答