期刊问答网 论文发表 期刊发表 期刊问答

小学数学思政论文

  • 回答数

    2

  • 浏览数

    255

文心雕龙m
首页 > 期刊问答网 > 期刊问答 > 小学数学思政论文

2个回答 默认排序1
  • 默认排序
  • 按时间排序

2008140517

已采纳
教学目标要以课程改革为核心,以课题研究为载体,以学生全面发展、教师业务能力不断提升为目标,以提高课堂教学效率、教学质量、减轻学生课业负担为根本。数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。数学技术:随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

小学数学思政论文

101 评论(9)

任永波

如何在小学数学课上渗透思政怎样在课堂教学中渗透数学思想?在数学教学中,教师除了基础知识和基本技能的教学外,必须重视数学思想方法的渗透教学,注重对学生进行数学思想方法的培养。研究教材,挖掘数学思想方法数学教材是按数学内容的逻辑体系与认识理论的教学体系相结合的办法来安排的。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。然而数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在教学中,深入挖掘隐含在教材里的数学思想方法,精心设计课堂教学过程,展示数学思维过程,这样才有助于学生了解其中数学思想方法的产生、应用和发展的过程;理解数学思想方法的特征,应用的条件,掌握数学思想方法的实质。教师在备课的过程中要理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。如,在教学多边形的内角和等于(n-2)×180°时,应引导学生已学过的三角形内角和定理,遇到多边形的内角和考虑把多边形的问题转化为三角形的问题,从而引导学生把多边形通过辅助线分割成多个三角形,从而把多边形的问题转化为三角形的问题,当然在这里辅助线的添加方法是多种的,但是学生只要掌握了多边形的内角和转化为三角形的内角和的思想后,添加辅助线以及推导证明多边形的内角和就很容易了。把握重难点,提炼数学思想方法数学教学中的重点,往往就是需要有意识地运用或揭示数学思想方法之处。数学教学中的难点,往往与数学思想方法的更新交替、综合运用、跳跃性较大有关。因此,教师要掌握重点,突破难点,更要有意识地运用数学思想方法组织教学。比如,在教学的过程中,我们经常发现如果仅仅就例题的解法传授给学生,那么经常会出现学生课上能听懂,下课不会做的现象,其实,问题还是出在学生没有掌握解决问题的方法,在课上他们得到的仅仅是模仿的范本,一旦离开范本,解题就不知所措了,但是如果我们在教学的过程挖掘解题过程中体现的数学思想方法,那么学生得到将远远大于解题本身。
171 评论(9)

相关问答