期刊问答网 论文发表 期刊发表 期刊问答

关于矩阵的论文题目有哪些

  • 回答数

    3

  • 浏览数

    331

可乐与雪碧的欢?/a>
首页 > 期刊问答网 > 期刊问答 > 关于矩阵的论文题目有哪些

3个回答 默认排序1
  • 默认排序
  • 按时间排序

三三09

已采纳
课程论文选题参考《高等代数》课程学习感悟《高等代数》中的。。。。思想《高等代数》中的。。。。方法高等代数与解析几何的关联性高等代数有关理论的等价命题高等代数有关理论的几何描述高等代数有关理论的应用实例高等代数知识在有关课程学习中的应用数学软件在高等代数学习中的应用应用高等代数知识的数学建模案例高等代数理论在金融中的应用反例在高等代数中的应用行列式理论的应用性研究一些特殊行列式的应用行列式计算方法综述范德蒙行列式的一些应用线性方程组的应用;线性方程组的推广——从向量到矩阵关于向量组的极大无关组向量组线性相关与线性无关的判别方法线性方程组求解方法综述 求解线性方程组的直接法与迭代法向量的应用矩阵多项式的性质及应用矩阵可逆的若干判别方法矩阵秩的不等式的讨论(应用)关于矩阵的伴随矩阵矩阵运算在经济中的应用关于分块矩阵分块矩阵的初等变换及应用矩阵初等变换及应用矩阵变换的几何特征二次型正定性及应用二次型的化简及应用化二次型为标准型的方法矩阵对角化的应用矩阵标准形的思想及应用矩阵在各种变换下的不变量及其应用线性变换的应用特征值与特征向量的应用关于线性变换的若干问题关于欧氏空间的若干问题矩阵等价、合同、相似的关联性及应用线性变换的命题与矩阵命题的相互转换问题线性空间与欧氏空间初等行变换在向量空间Pn中的应用哈密顿-凯莱定理及其应用施密特正交化方法的几何意义及其应用不变子空间与若当标准型之间的关系多项式不可约的判别方法及应用二次型的矩阵性质与应用分块矩阵及其应用欧氏空间中的正交变换及其几何应用对称矩阵的性质与应用求两个子空间的交与和的维数和一个基的方法关于n维欧氏空间子空间的正交补求若当标准形的几种方法相似矩阵的若干应用矩阵相似的若干判定方法正交矩阵的若干性质实对称矩阵正定性的若干等价条件欧氏空间中正交问题的探讨矩阵特征根及其在解题中的应用矩阵的特征值与特征向量的应用行列式在代数与几何中的简单应用欧氏空间内积不等式的应用求标准正交基的若干方法研究高等代数理论在经济学中的应用矩阵中的最小二乘法常见线性空间与欧式空间的基与标准正交基的求法

关于矩阵的论文题目有哪些

111 评论(10)

509510

什么是几何? 数学是研究数量关系和空间形式的一门科学.几何则是侧重研究空间形式. 相传古埃及的尼罗河每年都洪水泛滥,把两岸的土地淹没,人们无法辨认自己的田地,久而久之,人们利用测量与画图来测出土地的周界并计算面积,因而积累了大量的图形知识.后来希腊商人到埃及学会了测量与绘图知识,到公元前338年,希腊人欧几里得对这些知识作了系统的总结和整理,写出了一部关于几何的经典著作——《几何原本》,这就形成了一本完整的几何学.1607年,我国数学家徐光启和意大利传教士利玛窦一起翻译了《几何原本》,同学们学的几何课本就源于这部书. 十八世纪德国著名数学家高斯在19岁时就用圆规和直尺作出了正十七边形.1500年前,我国数学家祖冲之,计算出圆周率在1415926与1415927之间,他们为几何学的发展作出了杰出的贡献,同学们现在学习的是平面几何,高中要学习立体几何、平面解析几何,大学还要学习微分几何,空间解析几何,黎曼几何等. 二 如何学好几何? 学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”.其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的. 第一 要学好概念.首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 第二 要学好几何语言.几何语言又分为文字语言和符号语言,几何语言总是和图形相联系.如文字语言:∠1和∠2互为补角,图形见下图,符号语言:∠1+∠2=180°,或∠1=180°-∠2,或∠2=180°-∠1. 第三 要进行直观思维.即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力. 第四 要富于想像.有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中. 第五 要边学习、边总结、边提高.几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结.比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线. 同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的.天下无难事,只要肯登攀,胜利将属于你们
302 评论(10)

峭抑谔lak

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
166 评论(15)

相关问答