期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    272

左李飞雨
首页 > 期刊问答网 > 期刊问答 > 关于量子力学的论文课题名称怎么取

3个回答 默认排序1
  • 默认排序
  • 按时间排序

shengxuejs

已采纳
有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。统计学中的许多随机事件的例子,严格说来实为决定性的。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学的发展简史量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。德布罗意的波粒二象性假设:E=ħω,p=h/λ,其中ħ=h/2π,可以由E=p²/2m得到λ=√(h²/2mE)。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥ħ/2。量子力学的基本内容量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。态函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。根据狄拉克符号表示,态函数,用<Ψ|和|Ψ>表示,态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(ħ/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。态函数可以表示为展开在正交空间集里的态矢比如|Ψ(x)>=∑|ρ_i>,其中|ρ_i>为彼此正交的空间基矢,=δm,n为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程,iħ(d/dt)|m>=H|m>,分离变数后就能得到不含时状态下的演化方程H|m>=En|m>,En是能量本征值,H是哈密顿能量算子。于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离

关于量子力学的论文课题名称怎么取

129 评论(9)

UK我阿狸

摘要:关于刚体平面平行运动的解题方法可以从多方面去考虑,从而求得所需求的物理量。关键词:无滑滚动、质量、半径、粗糙斜面下面让我们来看一道例题。一质量为m,半径为r的均匀圆柱体,沿倾角为α的粗糙斜面自静止无滑滚(如图),求质心,加速度ac法一:用平面平行运动动力学方程考虑斜面方向的运动,用f代表静摩擦力,据质心运动定理,有mgsinα-f=mac对于质心重力的力矩等于0,只有摩擦力的力矩,从而fr=icβ=1/2mr2刚体上的p点同时参与两种运动:随圆柱体以质心速度vc平动,和以线速度rω绕质心转动。无滑动意味着圆柱体与斜面的接触点p的瞬时速度为0,由此得vc=rω上式两边分别为对时间求导得d/dt·vc=rd/dtω所以有ac=rβ③由①②③推出法二:如图,通过该圆柱体对定点a的角动量定理,因为静摩擦力f对定点a的力矩为零,所以有la=3/2mvcr=3/2r2ω只有重力沿斜面的分力的力矩,设为τaτa=msinα*r据角动量定理有dla/dt=τa即(3/2)mr2β=(3/2)mrac=mgsinα*r所以有ac=(2/3)gsinα法三:用动能定理解题设圆柱体沿斜面滚过的距离为s时的速度为vc由于是无滑滚动,既是纯滚动vc=rω所以有ω=vc/r圆柱体的滚动后获得的总动能为t则t=tc+trc=(1/2)mvc2+(1/2)icω2=(1/2)mvc2+(1/4)m(rω)2=(3/4)mvc又由于初动能为0据动能定理有t-0=mgsinα*s(3/4)mvc2=mgs*sinα上式两边分别为时间t求导,得3mvc2/4dt=mgsinα*ds/dt所以有(3/2)ac=gsinα所以ac=(2/3)gsinα通过对上题的解答,我们运用到了力学中的刚体力学,角动量定理,动能定理等。所以要想学好力学就得善于发散思维!参考文献:①赵凯华、罗茵新概念物理教程高等教育出版社7②卢新平简明普通物理学30
81 评论(14)

小祸害的对象

物理小论文(力学)世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页72页黄理稳,李学荣《科学技术发展简史》华南理工大学出版社,2002年3月第一版,136页全林,《科技史简论》,科学出版社,2002年3月第一版,213页,214页周建,《没有极限的科学》,北京理工大学出版社,2006年4月第一版,102页吴平,《大学物理实验教程》机械工业出版社,2005年9月第一版,4页
210 评论(13)

相关问答