弦止
稀土这玩意其实不是土,而是十七种金属元素的合称,其中分为轻稀土、和重稀土两兄弟,小弟轻稀土主要用在冶金、陶瓷等行业;大哥重稀土则主攻激光、超导体、核工业等高精尖科技领域,有这么多的工业都需要稀土的加持,所以它也被称为“工业维生素”。 
稀土被人们称为新材料的“宝库”,是各国科学家,尤其是材料专家最关注的一组元素,被美国、日本等国家有关政府部门列为发展高技术产业的关键元素。有人认为,随着稀土元素的开发,将会引发一场新的技术革命。 稀土的英文是Rare Earth,意即“稀少的土”。其实这不过是18世纪遗留给人们的误会。1787年后人们相继发现了若干种稀土元素,但相应的矿物发现却很少。由于当时科学技术水平的限制,人们只能制得一些不纯净的、像土一样的氧化物,故人们便给这组元素留下了这么一个别致有趣的名字。 根据国际纯粹与应用化学联合会对稀土元素的定义,稀土类元素是门捷列夫元素周期表第三副族中原子序数从57至71的15个镧系元素,即镧(57)、铈(58)、镨(59)、钕(60)、钷(61)、钐(62)、铕(63)、钆(64)、铽(65)、镝(66)、钬(67)、铒(68)、铥(69)、镱(70)、镥(71),再加上与其电子结构和化学性质相近的钪(21)和钇(39),共计17个元素。除钪与钷外,其余15个元素往往共生。 根据稀土元素间物理化学性质和地球化学性质的某些差异和分离工艺的要求,学者们往往把稀土类元素分为轻、重两组或者轻、中、重三组。两组的分法以钆为界,钆以前的镧、镝、铈、镨、钕、钷、钐、铕7个元素为轻稀土元素,亦称铈组稀土元素;钆及钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素称为重稀土元素,亦称钇组稀土元素。尽管钇的原子量仅为89,但由于其离子半径在其它重稀土元素的离子半径链环之中,其化学性质更接近重稀土元素。在自然界也与其它重稀土元素共生。故它被归为重稀土组。轻中重三组稀土的分类法没有一定之规,如按稀土硫酸复盐溶解度大小可分为:难溶性铈组即轻稀土组,包括镧、铈、镨、钕、钐;微溶性铽组即中稀土组,包括铕、钆、铽、镝;较易溶性的钇组即重稀土组,包括钇、钬、铒、铥、镱、镥。然而各组之间相邻元素间的溶解度差别很小,用这种方法是分不净的。现在多用萃取法分组,例如用二(2)乙基已基(磷酸)即P204可在钕/钐间分组,然后再在钆/铽间分组等。这们,镧、铈、镨、钕称为轻稀土,钐、铕、钆称为中稀土,铽、镝、钬、铒、铥、镱、镥再加上钇称为重稀土。 稀土在地壳中的含量并不稀少,这组元素的克拉克值达0236%,其中铈组元素为01592%,钇组元素为0077%;比常见元素铜(01%),锌(005%),锡(004%),铅(0016%),镍(008%),钴(003%)等都多。这组元素更不是土,而是一组典型的金属元素,其活泼性仅次于碱金属和碱土金属。表1-1 稀土元素在地壳中的丰度元 素 名 称 Sc Y La Ce Pr Nd Pm Sm 地壳丰度,ppm 25 31 35 66 1 40 5*10-1 06 元 素 名 称 Eu Gd Tb Dy Ho Er Tm Yb Lu 地壳丰度,ppm 1 1 2 5 3 3 5 1 8稀土元素在元素周期表中的位置十分特殊,17个元素同处在第ⅢB族,钪、钇、镧、分别为第四、五、六、长周期中过渡元素系列的第一个元素。镧与其后的14个元素性质十分相似,化学家们只能把它们放入一个格子内,难怪有人把它们当成“同位素”对待,然而由于其原子序数不同,还不能算作真正的同位素。就是说,它们性质十分相似,又不完全一样,这就造成了这组元素分离的困难,但也表明只要利用其微小的差别,分离又是可能的;另一方面,它们的电子结构有一个没有完全充满的内电子层,即4f电子层。由于4f层电子数的不同,这组元素的每一个元素又具有很特别的个性,特别是光学和磁学性质,就像是一架键盘齐全、音域宽广的钢琴一样。 信息、生物、新材料、新能源、空间和海洋被当代科学家推为六大新科技群,人们之所以重视稀土、研究稀土、开发稀土、就是为稀土元素在这六大科技群中都有其施展本领的天地。然而稀土元素毕竟还是一组尚不被人们完全认识的元素,这就需要下大力气去研究、认识它们,从而去撑握它们,使它们对人类有更大的贡献。
稀土方面论文主要分为以下几个部分:1、大标题(第一行):三黑字体,居中排。2、姓名(第二行):小三楷字体,居中排。3、作者单位或通信地址(第三行):按省名、城市名、邮编顺序排列,用小三楷字体。4、关键词。需列出4个关键词,小三楷字体。5、正文。小四号宋体。文中所用计量单位,一律按国际通用标准或国家标准,并用英文书写,如km2,kg等。文中年代、年月日、数字一律用阿拉伯数字表示。6、参考文献。文章必须有参考文献。“参考文献”4字作为标题,字体五黑,居中,其他字体五宋。7、作者简介。请在参考文献之后附作者简介。如果还有不清楚的地方,可以咨询轻松无忧论文网哦!论文格式模板是写好论文的必要条件之一!
一、稀土元素 稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。 “稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”: “轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。 “重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 二、稀土资源及储备状况 由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因此在矿物中它们常与其它元素一起共生。 我国稀土资源占世界稀土资源的80%,以氧化物(REO)计达3 600万吨,远景储量实际是1亿吨。 我国稀土资源分南北两大块。 ——北方:轻稀土资源,集中在包头白云鄂博特等地,以后在四川冕宁又有发现。主要含镧、铈、镨、钕和少量钐、铕、钆等元素; ——南方:中重稀土资源,分布在江西、广东、广西、福建、湖南等省,以罕见的离子态赋存与花岗岩风化壳层中,主要含钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇和镧、钕等元素。 我国的稀土工业也分为南北两大生产体系。 ——北方以包钢稀土高科公司和甘肃稀土公司为轴心,构成了以包头稀土资源为主,四川资源为辅的轻稀土产品生产体系。骨干企业有核工业202厂、包头鹿西罗纳稀土有限公司、包头市和发稀土厂、包头市稀土冶炼厂、哈尔滨稀土材料厂、四川稀土材料厂、四川什邡吉大化工厂、安宁河稀土冶炼厂等。主要产品有稀土精矿、稀土硅铁合金、混合稀土化合物、富集物、混合金属等。稀土精矿的生产能力和处理、加工能力达50 000吨(REO—氧化物计算)。 ——南方以上海跃龙有色金属有限公司为龙头,构成了以江西、广东两省离子型稀土资源为主的中重稀土生产体系。骨干企业有广州珠江冶炼厂、广东阳江稀土厂、江苏新威集团、江苏溧阳方正稀土总厂、江阴加华稀土冶炼厂、江苏江飞稀土冶炼厂、江西龙南稀土公司、江西寻乌稀土公司、江西省稀土公司、江西核工业713矿等。主要产品为各种高纯单一稀土化合物和金属、富集物、混合金属和合金。分离总规模已超过10 000吨,并开始大规模加工分离北方轻稀土原料。 四、稀土元素的应用范围 目前稀土元素的应用蓬勃发展,已扩展到科学技术的各个方面,尤其现代一些新型功能性材料的研制和应用,稀土元素已成为不可缺少的原料。 1、稀土元素在传统产业领域中应用 ——农业领域:目前发展有稀土农学、稀土土壤学、稀土植物生理学、稀土卫生毒理学和稀土微量分析学等学科。稀土作为植物的生长、生理调节剂,对农作物具有增产、改善品质和抗逆性三大特征;同时稀土属低毒物质,对人畜无害,对环境无污染;合理使用稀土,可使农作物增强抗旱、抗涝和抗倒伏能力。当前我国农田施用稀土面积达5 000—7 000万亩/年,为国家增产粮、棉、豆、油、糖等6—8亿公斤,直接经济效益为10—15亿元,年消费稀土1 100—1 200吨。 ——冶金工业领域:稀土在冶金工业中应用量很大,约占稀土总用量的1/3。稀土元素容易与氧和硫生成高熔点且在高温下塑性很小的氧化物、硫化物以及硫氧化合物等,钢水中加入稀土,可起脱硫脱氧改变夹杂物形态作用,改善钢的常、低温韧性、断裂性、减少某些钢的热脆性并能改善加热工性和焊接件的牢固性。 稀土在铸铁中作为石墨球化剂、形核剂核对有害元素的控制剂,提高铸件质量,对铸件的机械性能有很大改善,主要用于钢锭模、轧锟、铸管和异型件四个方面。 在有色合金方面应用,对以有色金属为基的各种合金都有良好的作用,改善合金的物理和机械性能。应用最多的使铝、镁、铜三个系列。 ——石油化工领域:稀土用于石油裂化工业中的稀土分子筛裂化催化剂,特点是活性高、选择性好、汽油的生产率高。稀土在这方面的用量很大。 ——玻璃工业领域:稀土在玻璃工业中有三个应用:玻璃着色、玻璃脱色和制备特种性能的玻璃。用于玻璃着色的稀土氧化物有钕(粉红色并带有紫色光泽)、镨玻璃为绿色(制造滤光片)等;二氧化铈可将玻璃中呈黄绿色的二价铁氧化为三价而脱色,避免了过去使用砷氧化物的毒性,还可以加入氧化钕进行物理脱色;稀土特种玻璃如铈玻璃(防辐射玻璃)、镧玻璃(光学玻璃)。 ——陶瓷工业领域:稀土可以加入陶瓷和瓷釉之中,减少釉和破裂并使其具有光泽。稀土更主要用做陶瓷的颜料,由于稀土元素有未充满的4f电子,可以吸收或发射从紫外、可见到红外光区不同波长的光,发射每种光区的范围小,导致陶瓷的颜色更柔和、纯正,色调新颖,光洁度好。如黄色、紫罗兰色、绿色、桃红色、橙色、棕色、黑色等。稀土氧化物可以制造耐高温透明陶瓷(应用于激光等领域)、耐高温坩埚(冶金)。 ——电光源工业领域:稀土作为荧光灯的发光材料,是节能性的光源,特点是光效好、光色好、寿命长。比白炽灯可节电75—80%。 2、稀土元素在高新技术产业中应用 ——显示器的发光材料:稀土元素中钇、铕是红色荧光粉的主要原料,广泛应用于彩色电视机、计算机及各种显示器。目前,我国年产彩电红粉300—400吨,计算机显示器红粉50—100吨,以满足国产3 500万支彩显管和近百万支显示器的需求。 ——磁性材料:钕、钐、镨、镝等是制造现代超级永磁材料的主要原料,其磁性高出普通永磁材料4—10倍,广泛应用于电视机、电声、医疗设备、磁悬浮列车及军事工业等高新技术领域。据专家预测,本世纪末此类材料产值将达到35亿美元。我市南开大学研究开发出拥有自主知识产权的钕铁硼永磁材料就属此类,现正与肯达集团合作进行产业化。 ——储氢材料:稀土与过渡元素的金属间化合物MMNi5(MM为混合稀土金属)和LaNi5是优良的吸氢材料,被称为氢海绵。其最为成功的应用是制造二次电池——金属氢化物电池,即镍氢电池。其等体积充电容量是目前广泛使用的镍镉电池的2倍,充放电循环寿命和输出电压与镍镉电池一样,但没有了镉污染。我市南开大学在储氢材料研究开发上有很大优势,通过863项目,和平海湾公司已开始了镍氢电池产业化工作。 ——激光材料:稀土离子是固体激光材料和无机液体激光材料的最主要的激活剂,其中以掺Nd3+的激光材料研究得最多,除钇铝石榴石(YAG)、铝酸钇(YAP)玻璃等基质外,高稀土浓度激光材料可能称为特殊应用的材料。 ——精密陶瓷:氧化钇部分稳定的氧化镐是性能十分优异的结构陶瓷,可制作各种特殊用途的刀剪;可以制作汽车发动机,因其具有高导热、低膨胀系数、热稳定性能好、在1 650℃下工作强度不降低,导致发动机马力大、省燃料等优点。 ——催化剂:稀土除用于制造石油裂化催化剂外,广泛应用于很多化学反应,如稀土氧化物LaO3、Nd2O3和Sm2O3用于环己烷脱氢制苯,用LnCoO3代替铂催化氧化氨制硝酸。并在合成异戊橡胶、顺丁橡胶的生产中作为催化剂。 汽车尾气需要将CH、CO氧化,对NOX进行还原处理,以解决目前城市空气污染问题。稀土元素是汽车尾气净化催化剂的主要原料。我市化工研究院在这方面有很强的优势,可推动形成一个汽车尾气净化器产品。 ——高温超导材料:近几年研究表明,许多单一稀土氧化物及其某些混合稀土氧化物是高温超导材料的重要原料。一旦高温超导材料进入实用,整个世界将起翻天覆地的变化。目前,我国在稀土超导材料的成材研究方面取得了有意义的突破。
稀土元素的用途:大多数稀土元素呈现顺磁性。钆在0℃时比铁具更强的 铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出 稀土金属的物理性质有极大差异。钐、铕、钇的热 中子吸收截面比广泛用于 核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外, 钇组稀土较铈组稀土具有更高的硬度。稀土元素已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、 磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。 常用的氯化物体系为KCl-RECl3他们在工农业生产和科研中有广泛的用途,在钢铁、 铸铁和合金中加入少量稀土能大大改善性能。用稀土制得的 磁性材料其磁性极强,用途广泛。在化学工业中广泛用作催化剂。 稀土氧化物是重要的 发光材料、 激光材料。简介:稀土元素是17种特殊的元素的统称,它的得名是因为瑞典科学家在提取稀土元素时应用了稀土化合物,所以得名稀土元素。稀土元素就是化学元素周期表中镧系元素—— 镧(La)、 铈(Ce)、 镨(Pr)、 钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、 钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素—钇(Y)和钪(Sc)共17种元素,称为稀土元素。共性:1、它们的原子结构相似;2、离子半径相近(RE 3+离子半径06×10 -10m~84×10 -10m,Y 3+为89×10 -10m);3、它们在自然界密切共生。特性:稀土元素是周期表中IIIB族钇和镧系元素之总称。其中钷是人造放射性元素。他们都是很活泼的金属,性质极为相似,常见化合价+3,其 水合离子大多有颜色,易形成稳定的配化合物。 稀土金属,由于熔点较低,在电解过程可呈 熔融状态在阴极上析出,故一般均采用电解法制取。可用 氯化物和 氟化物两种盐系,前者以稀土氯化物为原料加入电解槽,后者则以氧化物的形式加入。