期刊问答网 论文发表 期刊发表 期刊问答

关于炼钢的论文题目

  • 回答数

    3

  • 浏览数

    92

张学硕
首页 > 期刊问答网 > 期刊问答 > 关于炼钢的论文题目

3个回答 默认排序1
  • 默认排序
  • 按时间排序

WELLF

已采纳
引言  随着现代科学技术的发展和工农业对钢材质量要求的提高,钢厂普遍采用了炉外精炼工艺流程,它已成为现代炼钢工艺中不可缺少的重要环节。由于这种技术可以提高炼钢设备的生产能力,改善钢材质量,降低能耗,减少耐材、能源和铁合金消耗,因此,炉外精炼技术已成为当今世界钢铁冶金发展的方向。对于炉外精炼技术存在的问题及发展方向有必要进行探讨。  1 国内外炉外精炼技术的发展历程和现状  随着炼钢技术的不断进步,炉外精炼在现代钢铁生产中已经占有重要地位,传统的生产流程(高炉→炼钢炉(电炉或转炉)→铸锭),已逐步被新的流程(高炉→铁水预处理→炼钢炉→炉外精炼→连铸)所代替。已成为国内外大型钢铁企业生产的主要工艺流程,尤其在特殊钢领域,精炼和连铸技术发展得日趋成熟。精炼工序在整个流程中起到至关重要的作用,一方面通过这道工序可以提高钢的纯净度、去除有害夹杂、进行微合金化和夹杂物变性处理;另一方面,精炼又是一个缓冲环节,有利于连铸生产均衡地进行。  日本在20世纪70年代为了降低炼钢成本,提高钢的纯净度和质量,率先将炉外精炼技术应用于特殊钢生产中,随后西欧的钢铁企业也加入到推广和使用这项技术的行列中。据资料报道,日本早在1985年精炼率达到9%,1989年上升到4%,特殊钢的精炼率达到94%,新建电炉短流程钢厂100%采用炉外精炼技术。80年代连铸技术发展迅速,原有的炼钢炉难以满足连铸的技术要求,更加促进了炉外精炼技术的发展,到1990年为止世界各主要工业国家拥有1000多台(套)炉外精炼设备。  我国早在20世纪50年代末,60年代中期就在炼钢生产中采用高碱度合成渣在出钢过程中脱硫冶炼轴承钢、钢包静态脱气等初步精炼技术,但没有精炼的装备。60年代中期至70年代有些特钢企业(大冶、武钢等)引进一批真空精炼设备。80年代我国自行研制开发的精炼设备逐渐投入使用(如LF炉、喷粉、搅拌设备),黑龙江省冶金研究所等单位联合研制开发了喂线机、包芯线机和合金芯线,完善了炉外精炼技术的辅助技术。现在这项技术已经非常成熟,以炉外精炼技术为核心的“三位一体”短流程工艺广泛应用于国内各钢铁企业,取得了很好的效果。初炼(电炉或转炉)→精炼→连铸,成了现代化典型的工艺短流程。  2 炉外精炼技术的特点与功能  炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下:  1)可以改变冶金反应条件。炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。  2)可以加快熔池的传质速度。液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。  3)可以增大渣钢反应的面积。各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为8~3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为3mm的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。  4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。  3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH法、VOD法。  1 LF法(钢包精炼炉法)  它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。  1 工艺优点  1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃;  2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性;  3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。  2 LF法的生产工艺要点  1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电5~8kW·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。  2)采用白渣精炼工艺。下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。吹氩搅拌时避免钢液裸露。  3)合金微调与窄成份范围控制。据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到9%,硼的回收率达3%,钢包喂碳线回收率高达90%,ZG30CrMnMoRE喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。  3 LF法在生产实践中的应用  2000年6月,鞍钢第一炼钢厂新建的连铸车间正式投产,精炼设备由两座LF钢包精炼炉,年处理钢水200万t;一座VD钢水真空处理装置,年处理钢水80万t组成。LF炉最大升温速度为4℃,LF炉平均处理周期≤28min;处理效果:平均[H]≤0002%;最低[H]≤0001%。  我国现有家重轨生产厂(攀钢、包钢、鞍钢和武钢)生产典型的工艺路线如下:LD→LF→VD→WF→CC,钢包吊到LF处理线的钢包车上后,由人工接通钢包底吹氩的快速接头,根据要求的钢水成分及温度确定物料的投入量(含喂丝)重轨钢含碳量较高,因而增碳显得很重要,转炉出钢时钢水含碳量控制为2%~3%(wt),炉后增碳至60%~65%(wt),在LF炉处理时再增10%~15%(wt)个碳至标准成份的中上限,经VD处理后即可达到钢种成分要求。  2 RH法(真空循环脱气法)这种方法是1958年西德发明的,其基本原理是利用气泡将钢水不断的提升到真空室内进行脱气、脱碳,然后回流到钢包中。  1 RH法的优点  1)反应速度快。真空脱气周期短,一般10分钟可以完成脱气操作,5分种能完成合金化及温度均匀化,可与转炉配合使用。  2)反应效率高。钢水直接在真空室内反应,钢中可达到[H]≤0×10-6,[N]≤25×10-6,[C]≤10×10-6,的超纯净钢。  3)可进行吹氧脱碳和二次燃烧热补偿,减少精炼过程的温降。  2 RH法工艺参数  1)RH循环量。循环量是指单位时间内通过上升管或下降管的钢水量,单位是t/min。有关资料给出的计算公式为: Q=002×D5·G33,式中:Q———循环流量,t/min;Du———上升管直径,cm;G———上升管内氩气流量,L/min。  2)循环因数。他是指在RH处理过程中通过真空室的钢水与处理量之比,其公式为:μ=w·t/v式中:μ———循环因数,次;w———循环量,t/min;t———循环时间,min;v———钢包容量,t。  3)供氧强度与含碳量的关系。向RH内吹氧可以提高脱碳速度,即RH-OB法。当[C]/[O]>66时钢包内氧的传质速度决定脱碳速度,其计算公式为:  QO2=3×Q·[C]式中:QO2———氧气强度,Nm3/min;Q———钢水循环量,t/min;[C]———含碳量,Nm3/t。  3 RH法在生产实践中的应用  日本的山阳钢厂将LF与RH配合生产轴承钢形成EF-LF-RH-CC轴承钢生产线,钢中总氧量达到8×10-6。LF-RH法首先利用LF炉将钢水升温,利用LF搅拌和渣精炼功能进行还原精炼,是钢水脱硫和预脱氧,然后将钢水送入RH中进行脱氢和二次脱氧。经过这样处理大大的提高了钢水的清洁度,同时钢水的温度达到连铸需要的温度。  宝钢炉外精炼设备有RH-OB、钢包喷粉装置、CAS精炼装置,RH-OB的冶炼效果较理想,脱氢率为50%~70%,脱氮率为20%~40%,一般情况下,经RH-OB处理后[H]≤5×10-6,[C]≤30×10-6,去除钢中非金属夹杂物一般能达到70%,钢中总氧量≤25×10-6,而且在RH中合金处理可以提高合金的收得率和控制的精确度,[C]、[Si]、[Mn]的控制精度能达到±01%,铝的精确度可达到5×10-3,取得了较好的炉外精炼效果。  3 VOD法(真空罐内钢包吹氧除气法)  1 VOD的特点VOD法是1965年西德首先开发应用的,它是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌。此方法适合生产超低碳不锈钢,达到保铬去碳的目的,可与转炉配合使用。他的优点是实现了低碳不锈钢冶炼的必要的热力学和动力学的条件-高温、真空、搅拌。  2 VOD法在生产实践中的应用  20世纪90年代初,上海大隆铸锻厂从德国莱宝(leybold)公司进口1台15tVODC的关键设备和技术软件。采用电炉初炼钢水经VODC炉外精炼的工艺方法,精炼了超低碳不锈钢、中低合金钢和碳钢,取得了很好的冶金效果,钢中非金属夹杂物减少,氢含量小于3×10-6氧含量小于5×10-6,不锈钢中铬回收率达98%~99%,精炼后的钢具有十分优越的性能。VODC精炼工艺成熟,控制容易,适应中小型钢厂和铸钢厂的多钢种、小吨位精炼生产需要,对发展铸钢行业的精炼生产会起到很大积极作用,具有广阔的发展前景10。  抚顺特殊钢有限公司有30tVOD炉,采用EAF+VOD技术精炼不锈钢,可使[H]≤58×10-6,T[O]≤9×10-6,铬回收率达到5%,脱硫率2%,精炼高碳铬轴承钢T[O]≤13×10-6 。  4 发展炉外精炼技术需解决的问题及发展方向炉外精炼技术已经应用40年,对提高钢的纯净度、精确控制成分含量及细化组织结构等方面都起了重要作用,使冶炼成本大幅降低,同时提高了钢的品质和性能。但在发展的过程中也出现了一些问题,有待于解决,使这项技术更加完美。  1)实现炉外精炼工艺的智能化控制,根据来料钢水的各种技术参数,利用信息技术,制定最佳的精炼工艺方案,并通过计算机控制各精炼工序。精炼工位配备快速分析设备,实现数据网络化,减少热停等待时间。  2)炉外处理设备将实现“多功能化”。在水钢精炼设备中将渣洗精炼、真空冶金、搅拌工艺以及加热控温功能全部组合起来,实现精炼,以满足超纯净钢生产的社会需求。  3)开发高纯度、高密度、高强度的优质碱性耐火材料,以适应不同精炼炉的需要,注重产品质量的稳定性。耐火材料的使用条件应尽可能与炉渣相适应,最大限度地降低侵蚀速度。要根据精炼设备的实际情况形成不同层次的配套材料,研究开发保温和修补技术,提高炉衬的使用寿命。  4)减少精炼过程的污染排放,精炼过程会产生大量废气,其中含SO2、Pb、金属氧化物、悬浮颗粒等,在真空脱气冷却水中含有固态悬浮物、Pb、Zn等,这些污染物须经企业内部的相关处理,把污染程度降低到符合排放标准后再排放,加强环境保护意识。  5 结束语  炉外精炼技术是一项提高产品质量,降低生产成本的先进技术,是现代化炼钢工艺不可缺少的重要环节,具有化学成分及温度的精确控制、夹杂物排除、顶渣还原脱S、Ca处理、夹杂物形态控制、去除H、O、C、S等杂质、真空脱气等冶金功能。只有强化每项功能的作用,才能发挥炉外精炼的优势,生产出高品质纯净钢种。

关于炼钢的论文题目

266 评论(11)

ksharp888

镁法海绵钛爬壁钛生成量的初探沈俊宇(遵义钛业股份有限公司 贵州省 563004)摘要:在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,一炉产品爬壁钛的生成量少则500 kg左右,多则达800至1000 kg,爬壁钛不仅产品取出困难,增加操作人员劳动强度,而且其质量较差,经济损失大。本文分析了海绵钛爬壁钛的形成机理及生产过程中爬壁钛增多的原因,提出了还原中后期最大加料速度限制,以缓解反应剧烈程度和控制反应液面高度在1#范围内小幅波动,防止形成新的活性中心,是生产过程中减少爬壁钛生成量的主要途径。关键词:海绵钛 爬壁钛 生成量 加料速度 反应液面高度A Study the Production of the Titanium on Walls Produced in the Process of Sponge Producing by Magnesium ProcessJunyu,Shen(Zunyi Titanium COLTDGuizhou 563004)Abstract:A quantity of annular titanium will be produced on upper walls of reactors during the reduction and distillation。The production per batch is from 500kg to 800 or 1, It is difficult for operators to take products out ,and also influences the quality Therefore ,the titanium on walls not only strengthens the labor intensity ,but also causes a big loss The paper analyzes the formation mechanism of the titanium on wall and reasons why its production Also,in order to ease the strong reaction,make the liquid level in reaction waves no more than 1’’and prevents the formation of new active centers ,the paper introduces a main method to reduce the production of the titanium on walls,that is to retrict the feed speed in mid or late period of reduction and Keywords:titanium sponge the titanium on walls production feed speed liquid level in reaction 1 前言在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,如图1所示。爬壁钛会导致以下不良后果: 第一,由于目前使用双法兰反应器,反应器上部热损失较大(上部有三圈水套,反应器约300 mm高度在加热炉外),上部爬壁钛中的氯化镁很难被蒸发出去,使爬壁钛中含有较高的杂质元素氯,剥取产品时会看到反应器口部(爬壁钛的最上部)粘有大量的镁和氯化镁。第二,海绵钛还原、蒸馏反应器为铁制反应器,由于爬壁钛在反应器器壁上粘附较强,加之双法兰反应器上部热损失大,为保证反应器上部温度,蒸馏期间加热炉1#、2#加热电阻丝送电频率高且时间长,致使爬壁钛普遍有发亮现象,分析结果显示杂质元素铁含量较高。第三,爬壁钛在反应器上部空间极易被泄漏进的空气污染,使产品中杂质元素氮、氧含量较高。由表1可看出,产品分析爬壁钛质量级别基本上在3—5级(极少部分在2级以上),同时,也有少部分因杂质元素过高成为等外品。一炉产品爬壁钛的生成量少则500kg左右,多则达800至1000 kg,经济损失较大。另外,爬壁钛过多也给产品取出带来困难,增加操作人员劳动强度。为了减少爬壁钛生成量,降低损失,我们进行了控制液面高度及调整料速试验。表1 2007年下半年爬壁钛质量统计表分析批数(批) 2级品批数(批) 3~5级品批数(批) 等外品批数(批) 2级品影响因素 3~5级品、等外品影响因素75 12 51 12 HB、Fe、Cl、O、N HB、Fe、Cl2 爬壁钛形成机理镁还原TiCl4主要反应为:TiCl4+2Mg=Ti+2MgCl2,在还原反应刚开始时,加入的TiCl4大部分气化,发生气相TiCl4—气相Mg或气相TiCl4—液相Mg反应,同时也有一部分TiCl4液体未来得及气化,进入液镁中,发生液相TiCl4—液相Mg间的反应。还原刚开始在反应器铁壁和熔镁表面夹角处上,一旦有钛晶粒出现后,裸露在熔镁面上方的钛晶体尖峰或棱角便成为活性中心。[1] 镁还原TiCl4主要在此活性中心上进行。液镁靠表面张力沿铁壁和钛晶体毛细孔上爬,被吸附在活性中心上,与气相TiCl4反应生成最初的海绵钛颗粒。随着反应的进行,生成的海绵钛颗粒依赖其与反应器壁的粘附力和熔体浮力的支持沿反应器壁在熔体表面逐渐长大,并浮在熔体表面。随着生成的海绵钛块增厚、增大,加之排放氯化镁,失去熔体浮力支持的海绵钛块体大部份就会沉落在熔体底部,这样在反应器器壁上,将有环状海绵钛粘附在其上,其实,这部分也是最初的爬壁钛。另外,在还原反应初期,液镁有很大的蒸发表面,而空间压力较低,故镁具有很大的蒸发速度。还原反应中期,反应温度较高和对反应器底部加热时,也会有部分镁蒸发。镁蒸气挥发后,冷凝在反应器器壁和大盖底部,与气相TiCl4反应也会生成部份爬壁钛。海绵钛块沉落熔体底部后,熔体表面会重新暴露出液镁的自由面,还原反应将恢复到较大的速度。随着反应的进行,在熔体表面会重新生成海绵钛桥,通过排放氯化镁,钛桥被破坏,海绵钛块靠自重下沉,又为下一层海绵钛生长创造条件,爬壁钛也在这一过程中逐渐形成,还原反应如此周而复始进行,直至镁的利用达到65%—75%之后。3 生产中爬壁钛增多原因分析1中后期加料速度随着还原反应的进行,特别是进入中期后,加料速度逐渐增加,反应进行的非常剧烈,熔体表面反应区中心部最高温度可达1200℃以上,而镁的沸点仅1105℃,此时镁处于沸腾状态。加之目前还原操作料速按玻璃转子流量计实际刻度与自动加料系统对照进行加料,因玻璃转子流量计出厂时是用水标定,当被测介质改为TiCl4时,其修正系数,经计算应为13。当玻璃转子刻度显示最大加料量为150 kg /5h,实际料速已达160~170 kg /5h。这样更加剧了反应的剧烈程度,沸腾的液镁将不断吸附在最初反应器壁上已形成的少量环状爬壁钛上,通过钛晶体毛细孔上爬,与气相TiCl4反应生成新爬壁钛,使原环状爬壁钛增多、增厚。另外,由于反应剧烈程度增加,也加剧了液镁的气化,液镁蒸气挥发后,冷凝附着在反应器器壁上部和大盖底部,与气相TiCl4反应生成爬壁钛,这些爬壁钛主要粘附在反应器器壁上部和大盖底部。因此,最大料速持续的时间越长,生成爬壁钛也就越多(表2)。表2 部分大料速爬壁钛生成量统计表最大料速(kg /5h) 持续的时间(h) 爬壁钛占毛产量比例(%)生产炉-1 155~165 35 75生产炉-2 145~155 40 55生产炉-3 155~165 36 67生产炉-4 155~165 40 35生产炉-5 155~165 35 2 反应液面高度反应液面高度太低、波动范围过大会增加爬壁钛生成量,其原因如下:第一,当反应液面高度过低时,TiCl4距液镁表面间距面相对较远,发生液相TiCl4—液相Mg间的反应相对减少,气相TiCl4与镁蒸气反应相对增加,从而增加爬壁钛生成量。第二,因未定时、定量准确排放MgCl2,反应液面高度大幅上下波动,易在钛晶体活性中心之外,形成新的活性中心,液镁靠表面吸引力沿铁壁和钛晶体孔隙上爬,被吸附在活性中心上,这样在反应器壁上会粘附形成新的爬壁钛。因此,不控制好液面高度,及时准确排放MgCl2,也将增加爬壁钛的生成量(表3)。表3 反应液面高度大幅波动量统计表反应液面高度波动范围 爬壁钛占毛产量比例(%)生产炉-6 1#~2# 88生产炉-7 1#~2# 82生产炉-8 1#~2# 67生产炉-9 1#~2# 02生产炉-10 1#~2# 02生产炉-11 1#~2# 814 措施通过上述分析,可以知道爬壁钛是海绵钛生产过程中必然要形成的,但其生成量是可以控制的,因此,我们对加料速度以及反应液面高度进行了调整。结合生产实践,采取两项措施:第一,我们对部分处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140 kg /5h,以缓解反应剧烈程度,特殊炉次,因反应温度太低,可以适当提高至160~170 kg /5h,但持续时间不能太长,最多3~4 h;后期最大料速限制在105~110 kg /5h。第二,控制反应液面在1#范围内小幅波动,防止形成新的活性中心,以达到降低爬壁钛生成量的目的(表4)。表4 调整料速及排放MgCl2制度试验对比表料速及排放MgCl2制度 平均爬壁钛占毛产比例(kg) 平均钛坨重量(kg) 平均加料时间(h) 中期平均最大料速(kg /5h) 后期平均最大料速(kg /5h)调整前 56 5291 89 160 120调整后 28 5483 87 138 107从表4的统计数据可以看出,通过控制最大料速以及控制好液面高度及时准确的排放MgCl2,产品生成的爬壁钛占毛产比例大大下降,调整前平均爬壁钛为56%,调整后平均爬壁钛28%,平均下降28%。在进行调整料速试验期间,对生产炉-59一炉产品还原中期加料再次进行提高料速到155~165 kg /5h试验,结果爬壁钛增至占毛产量的93%,从这点也证明了加料速度对爬壁钛形成的影响。此外,调整前,钛坨平均重5291 kg,调整后,钛坨平均重5483 kg,平均毛产重量未受影响;调整前平均加料时间89小时,调整后平均加料时间87小时,加料时间也略有减少。试验在降低爬壁钛生成量的同时,缩短了还原生产周期,降低了还原电耗,取得了较好的效果。5 结论1对处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140kg /5h,后期最大料速限制在105~110 kg /5h 2控制反应液面高度在1#范围内小幅波动。本试验在巩固海绵钛钛坨产量的情况下,降低了爬壁钛生成量,试验取得了效果,为进一步研究探索海绵钛爬壁钛生成量打下了基础。参考资料[1] 莫畏, 邓国珠 ,罗方承 钛冶金[M]版次(第二版)北京:冶金工业出版社,1998:281-293
106 评论(10)

跳跳想吃鱼

低钛生铁的高炉冶炼生产实践 ________________________________________ 发表日期:2007年10月31日 【编辑录入:base】 摘 要:分析了生铁中的钛源、生铁降钛途径及林钢高炉冶炼条件下钛的还原情况,介绍了冶炼低钛生铁(〔Ti〕≤03%)采取的精料、低硅操作、高风温、合理造渣等一系列技术措施。 关键字:高炉 精料 低炉温 低钛 生铁 前言 濮阳市林州钢铁有限责任公司(简称林钢)是一个专业炼铁厂,是豫北地区规模较大的铸造用生铁生产基地,具有低S、低P(一般〔S〕≤03%,〔P〕≤04%)质量特点的优质球墨铸铁用生铁是公司的拳头产品。近年来,随着我国汽车工业的结构性调整,许多精密铸件对生铁质量要求越来越高,尤其对生铁中的某些微量元素要求更严。因此,为满足市场对球墨铸铁用生铁低S、低P、低Ti(即三低)的质量要求,也为进一步扩大生铁的质量优势,决定组织攻关开发市场需求大、要求内在质量高的低钛生铁(〔Ti〕≤03%)新产品,经过理论计算、技术分析、原料优化、高炉操作,于2005年3月成功开发出低钛生铁新产品。现浅谈一下我们冶炼低钛生铁的生产实践。 生铁降钛的理论依据1生铁中钛的来源 林钢以冶炼铸造生铁为主,受原料条件和炉况波动的双重影响,即使生产炼钢生铁,炉温也常控制在较高水平,因此,生铁中的钛含量也比较高,是低钛生铁要求钛含量的两倍多。分析表明,在高炉冶炼所用的原燃料中,烧结矿中TiO2含量为13%,焦炭中TiO2含量为20%,因此,烧结矿和焦炭是生铁中钛的主要来源,林钢生铁化学成分见表1。 表1林钢生铁化学成分,%铁种 Si Mn S P C Ti铸造用生铁 57 28 019 035 38 083球墨铸铁用生铁 33 11 028 036 30 073炼钢用生铁 90 11 035 035 37 2钛在高炉内的还原及其影响因素 钛以TiO2形态存在于矿石中,TiO2比SiO2更稳定,更难还原。与Si的还原一样,Ti的还原需要消耗大量的热量,还原单位重量Ti所消耗的热量比还原Si时大14〔1〕倍。因此,在高炉内,钛的还原只能是在高温条件下的直接还原。 理论与实践表明:影响钛还原的主要因素有炉温、炉渣碱度、渣中TiO2含量、入炉TiO2负荷。炉温对Ti还原的影响体现在对Si的还原上。由实验证实,渣内SiO2和TiO2同时还原,并且〔Ti〕/(TiO2)和〔Si〕/(SiO2)几乎成直线的关系。因此,控制了硅的分配比,就能控制钛的分配比〔2〕,而炉温的高低影响着硅的还原,因此也影响着钛的还原,所以,炉温愈高,愈有利于钛的还原,炉温愈低,愈不利于钛的还原,生铁中的钛含量也就愈低。 炉渣碱度也严重影响〔Ti〕的增减,当渣中TiO2含量较高(>25%)时,〔Ti〕随碱度升高而减少;而TiO2含量较低(<25%)时,〔Ti〕却随碱度升高而增加〔3〕。因此,高炉冶炼低TiO2渣时,在保证生铁脱硫的条件下,保持较低的炉渣碱度,以减少TiO2的还原。当其它条件一定时,〔Ti〕随渣中TiO2含量的增加而增加,即炉渣中TiO2含量愈高,愈有利于Ti的还原,生铁中的Ti含量就愈高;炉渣中TiO2含量愈低,愈不利于Ti的还原,生铁中的Ti含量就愈低,林钢高炉冶炼(TiO2)量属于后者。 根据钛在炉内还原率公式ηTi=进入生铁Ti/入炉钛×100%知,入炉TiO2负荷升高,则〔Ti〕含量升高,但钛的还原率下降,入炉TiO2负荷降低,则〔Ti〕含量降低,但钛的还原率上升,因此,降低入炉TiO2负荷,可降低生铁中的钛含量。 综上所述,在高炉冶炼中,降低生铁中钛含量的主要途径有:降低入炉TiO2负荷、减少TiO2入炉量,低硅操作、低碱度、低渣量等。 高炉试验 钛的还原与硅的还原呈正相关关系,因此不同原料、不同高炉操作条件下,钛在高炉内的还原率是不同的,为掌握在林钢高炉冶炼条件下高炉内Ti与Si的定量关系,我们跟踪统计了95炉次〔Si〕≤0%的〔Si〕、〔Ti〕对应值,经一元线性回归分析后得出:〔Ti〕=075〔Si〕+0004(r=90)同时,计算出不同〔Si〕条件下钛在炉内的还原率(见表2) 表2钛在炉内的还原率,%〔Si〕 00~90 89~80 79~70 69~60 59~50 49~40Ti 70 43 24 96 22 85试验中还发现,〔Si〕的变化对生铁中的钛含量的影响,在〔Si〕低时生铁中钛含量降低得比〔Si〕高时更为明显。 低钛生铁的冶炼技术及生产实践 在分析了生铁中的钛源、降钛途径及高炉冶炼具体条件下炉内钛的还原情况后,根据我厂高炉用料杂、成分波动大、高炉容积小的特点,制订了下述冶炼低钛生铁的具体技术措施:1控制钛源,降低入炉TiO2负荷 在供给我厂高炉原燃料的供方中,经跟踪化验分析后,选择购进TiO2≤05%的精矿粉和TiO2≤12%的焦炭。2低硅操作 根据试验得出的〔Si〕、〔Ti〕定量关系及所购原燃料,经下列配料计算。原燃料:烧结矿TFe=59%,TiO2=072%,批重1700kg/批。焦炭TiO2=12%,批重650kg批。每批料的理论出铁量为:59×94=1067kg/批入炉Ti的总量为:〔(1700×072%)+(650×12%)〕×48/80=2024kg/批则生铁中的钛含量为:〔Ti〕=2024×22%÷1067×100%=023%并确定将炉温控制在〔Si〕≤50%。3适宜的炉渣碱度 林钢高炉炉渣中TiO2含量在25%左右,小于5%,属低钛渣,根据炉渣碱度对〔Ti〕的影响,考虑到硫负荷的大小和炉内生铁脱硫的需要,选择炉渣二元碱度在95~10。4使用高风温 鼓风所带的物理热不仅能在高炉下部全部被利用,而且可替代部分焦炭燃烧所产生的热量,因此,提高风温,一方面可降低焦比,减少焦炭带入TiO2,减少渣量及(TiO2)含量;另一方面,可提高渣铁温度,保证炉缸充足的热量,使渣铁有足够的温度和良好的流动性,炉缸工作更均匀、活跃,脱硫条件也得以改善,因此,要求风温≥900℃。5精心操作,稳定炉况 冶炼低钛生铁的特点是必须控制较低的炉温水平,〔Si〕、〔S〕、〔Ti〕的含量与标准偏差要求十分严格,同时炉缸热量也处于十分紧张与接近平衡状态,工长必须精心操作,下部保持全风操作,尽量使用高风温,勤放上渣以缩短渣在炉内的停留时间,上部保持7PK+3KP(P—矿,K—焦)的装料制度,稳定两股气流,使高炉上稳下活,稳定顺行。6加强设备管理 冶炼低钛生铁是全厂综合水平的集中体现,要求原料、操作、设备管理各方面的密切配合,防止设备事故发生,尤其对高炉的冷却设备要加强巡视检查,发现问题应及时处理,防止因冷却设备漏水造成炉缸冻结。 在上述6条措施下,通过周密布署,合理组织,于2005年3月在两座高炉上同时进行了为期一周的低钛生铁生产,共产低钛生铁4260t,其化学成分(表3)完全符合低钛生铁的质量要求。 表3低钛生铁化学成分,%Si Ti S P≤50 ≤03 ≤03 ≤ 结语 (1)小高炉上冶炼低钛生铁是完全可以的,低钛生铁冶炼的基本条件是:精料、低炉温高炉操作及良好的设备管理,三者之中,精料是基础、操作是关键、设备是保证。 (2)由于钛在炉内的还原率随炉温不同而不同,因此,只有找出高炉具体冶炼条件下钛的还原率是多少,才能制订出相应的原料选择条件及高炉操作制度。 (3)凡能降低矿耗、降低焦比的任何措施,都可降低入炉TiO2。进而降低〔Ti〕含量,如提高入炉矿品位、提高风温、改善煤气利用和保持炉况顺行等,都有利于低钛生铁冶炼。但这些要以精料为基础。 (4)低钛生铁新产品的成功开发,进一步提高了生铁的内在质量,对企业产生了良好的经济效益和社会效益。读者注:本文试验是在林钢号称205m3实际是125m3的高炉上进行的。
157 评论(12)

相关问答