xbqiu
[1]毛纲源 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J] 应用数学,1995,(3) [2]游兆永,姜宗乾, 分块矩阵的对角占优性[J] 西安交通大学学报,1984,(3) [3]曹重光 体上分块矩阵群逆的某些结果[J] 黑龙江大学自然科学学报,2001,(3) [4]庄瓦金 非交换主理想整环上分块矩阵的秩[J] 数学研究与评论,1994,(2) [5]曹礼廉,李芳芸,柴跃廷 一种用于MRP的分块矩阵方法[J] 高技术通讯,1997,(7) [6]逄明贤 分块矩阵的Cassini型谱包含域[J] 数学学报,2000,(3) [7]杨月婷 一类分块矩阵的谱包含域[J] 数学研究,1998,(4) [8]何承源 R-循环分块矩阵求逆的快速傅里叶算法[J] 数值计算与计算机应用,2000,(1) [9]马元婧,曹重光 分块矩阵的群逆[J] 哈尔滨师范大学自然科学学报,2005,(4) [10]游兆永,黄廷祝 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J] 工程数学学报,1995,(2) 
随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。
对称矩阵A正定的充分必要条件是A的n个特征值全是正数。2.对称矩阵A正定的充分必要条件是A合同于单位矩阵E。3.对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU4.对称矩阵A正定,则A的主对角线元素均为正数。5.对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。扩展资料在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。参考资料:百度百科——矩阵 (数学术语)
矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。