期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    310

大勺liusmn
首页 > 期刊问答网 > 期刊问答 > 论文中常见的统计学错误有哪些

5个回答 默认排序1
  • 默认排序
  • 按时间排序

one_forone

已采纳
弃真错误是指放弃了真实的、成立的结论。而存伪是保留了不成立的、错误的结论。二者是统计检验中的两个错误。

论文中常见的统计学错误有哪些

253 评论(9)

leizi0926

1、变量之间关系可以分为两类函数关系:反映了事物之间某种确定性关系。相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系;2、为什么要对相关系数进行显著性检验?实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到一个较大的相关系数值(尤其是时间序列数值)。当样本数较少,相关系数就很大。当样本量从100减少到40后,相关系数大概率会上升,但上升到多少,这个就不能保证了;取决于你的剔除数据原则,还有这组数据真的可能不存在相关性;改变两列数据的顺序,不会对相关系数,和散点图(拟合的函数曲线)造成影响;对两列数据进行归一化处理,标准化处理,不会影响相关系数;我们计算的相关系数是线性相关系数,只能反映两者是否具备线性关系。相关系数高是线性模型拟合程度高的前提;此外相关系数反映两个变量之间的相关性,多个变量之间的相关性可以通过复相关系数来衡量。3、增加变量个数,R2会增大;P值,F值只要满足条件即可,不必追求其值过小。4、多重共线性与统计假设检验傻傻分不清?多重共线性与统计假设没有直接关联,但是对于解释多元回归的结果非常重要。相关系数反应两个变量之间的相关性;回归系数是假设其他变量不变,自变量变化一个单位,对因变量的影响,而存在多重共线性(变量之间相关系数很大),就会导致解释困难;比如y~x1+x2;x·1与x2存在多重共线性,当x1变化一个单位,x2不变,对y的影响;而x1与x2高度相关,就会解释没有意义。一元回归不存在多重共线性的问题;而多元线性回归要摒弃多重共线性的影响;所以要先对所有的变量进行相关系数分析,初步判定是否满足前提---多重共线性。
129 评论(11)

shark0078989

第一类错误,又叫拒真错误,即本来原假设是正确的,而根据样本得出的统计量的值落入了拒绝域,根据检验拒绝了正确的原假设。第二类错误,又叫受伪错误,即本来原假设是错误的,而根据样本得出的统计量的值落入了接受域,不能拒绝原假设,接受了(确切地说是不拒绝)原本错误的原假设。
320 评论(13)

水木丶易

1、第一类错误又称Ⅰ型错误、拒真错误,是指拒绝了实际上成立的、正确的假设,为“弃真”的错误,其概率通常用α表示。假设检验是反证法的思想,依据样本统计量作出的统计推断,其推断结论并非绝对正确,结论有时也可能有错误,错误分为两类。2、第二类错误,Ⅱ型错误,接受了实际上不成立的H0 ,也就是错误地判为无差别,这类取伪的错误称为第二类错误,其概率用β表示。简单说就是:你的假设是错误,但你接受该假设。“第一类错误”和“第二类错误”之间的关系:1、当样本例数固定时,α愈小,β愈大;反之,α愈大,β愈小。因而可通过选定α控制β大小。要同时减小α和β,唯有增加样本例数。统计上将1-β称为检验效能或把握度(power of a test),即两个总体确有差别存在,而以α为检验水准,假设检验能发现它们有差别的能力。实际工作中应权衡两类错误中哪一个重要以选择检验水准的大小。2、做假设检验的时候会犯两种错误:第一,原假设是正确的,而你判断它为错误的;第二,原假设是错误的,而你判断它为正确的。我们分别称这两种错误为第一类错误(Type I error)和第二类错误(Type II error)。第一类错误:原假设是正确的,却拒绝了原假设。第二类错误:原假设是错误的,却没有拒绝原假设。我们常把假设检验比作法庭判案,我们想知道被告是好人还是坏人。原假设是“被告是好人”,备择假设是“被告是坏人”。法庭判案会犯两种错误:如果被告真是好人,而你判他有罪,这是第一类错误(错杀好人);如果被告真是坏人,而你判他无罪,这是第二类错误(放走坏人)。记忆方法:我们可以把第一类错误记为“以真为假”,把第二类错误记为“以假为真”。当然我们也可以将第一类错误记为“错杀好人”,把第二类错误记为“放走坏人”。在其他条件不变的情况下,如果要求犯第一类错误概率越小,那么犯第二类错误的概率就会越大。这个结论比较容易理解,当我们要求“错杀好人”的概率降低时,那么往往就会“放走坏人”。同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。
333 评论(8)

Emerald7589

弃真错误,是指拒绝了实际上成立的、正确的假设。存伪错误是指原假设是错误的,但是没有拒绝它。
285 评论(14)

相关问答