期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    224

老冯来了
首页 > 期刊问答网 > 期刊问答 > 城市规划论文范文初中数学

4个回答 默认排序1
  • 默认排序
  • 按时间排序

木头尖子

已采纳
和这个差不多:毕业论文格式标准 1、引言 1 制订本标准的目的是为了统一规范我省电大本科汉语言文学类毕业论文的格式,保证毕业论文的质量。 2 毕业论文应采用最新颁布的汉语简化文字、符合《出版物汉字使用管理规定》,由作者在计算机上输入、编排与打印完成。论文主体部分字数6000-8000。 3 毕业论文作者应在选题前后阅读大量有关文献,文献阅读量不少于10篇。并将其列入参考文献表,并在正文中引用内容处注明参考文献编号(按出现先后顺序编)。 2、编写要求 1 页面要求:毕业论文须用A4(210×297)标准、70克以上白纸,一律采用单面打印;毕业论文页边距按以下标准设置:上边距为30mm,下边距为25mm,左边距和右边距为25mm;装订线为10mm,页眉16mm,页脚15mm。 2 页眉:页眉从摘要页开始到论文最后一页,均需设置。页眉内容:浙江广播电视大学汉语言文学类本科毕业论文,居中,打印字号为5号宋体,页眉之下有一条下划线。 3 页脚:从论文主体部分(引言或绪论)开始,用阿拉伯数字连续编页,页码编写方法为:第×页共×页,居中,打印字号为小五号宋体。 4 前置部分从中文题名页起单独编页。 5 字体与间距:毕业论文字体为小四号宋体,字间距设置为标准字间距,行间距设置为固定值20磅。 3、编写格式 1 毕业论文章、节的编号:按阿拉伯数字分级编号。 2 毕业论文的构成(按毕业论文中先后顺序排列): 前置部分: 封面 题名页 中文摘要,关键词 英文摘要,关键词(申请学位者必须有) 目次页(必要时) 主体部分: 引言(或绪论) 正文 结论 致谢(必要时) 参考文献 附录(必要时)

城市规划论文范文初中数学

300 评论(15)

nmgndjrmt

数学伴随我成长 1983年,大学刚刚毕业的我被分配到河北承德第一中学数学组,每位前辈都是业务精湛,师德堪称楷模,是真正能把高深的理论、经验的结晶和教学的智慧融为一体的教学专家从此,我不放过老教师那儿我能听的每一节课,对每节课都细细地揣摩,深刻地反思我总是把我的思考写在听课笔记上,记得四年下来,我一共听了1193节课,使我很快适应了高中教学老教师也关注着我的成长,在我的课堂上,真的记不清多少次在学生的"起立"声中,会突然发现有一位白发人站在课室后面……他们的关注让我兴奋,催我奋进
109 评论(12)

925轨迹

论文摘要:本文以递归的方法解决历史上著名的德•梅齐里克砝码问题,并加以推广阐述了一种特殊的进制数方式,对此问题作出了一个普遍解:任意给定一个自然数,能够以最少的个数的项保证其和为给定数而又能遍历1到此数间的任意整数。关键词:进制数,遍历,基底,状态值;一.问题介绍一位商人有一个40磅重的砝码,由于跌落在地而碎成4块,后来称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整磅数的重物,问这4块砝码碎片各是多少。摘自《100个著名初等数学问题》二.问题解决考虑这样一个用法码称重物的问题,实际上是通过在天平两端放不同砝码使各砝码值相加减得到目的值。用递归的方法能很好的解决:设前i块碎片的总质量为,由这块能够称出1~之间所有整磅数,那么第+1块碎片则为2+1,。它依次减去前块得到的各个磅数就能得到(+1)~(2+1),它依次加上前块得到的各个磅数就能得到(2+2)~(3+1)2+1—=+12+1+=3+12+1—(—1)=+22+1+(—1)=32+1—(—2)=+32+1+(—2)=3—1………………2+1—1=22+1+1=2+22+1自己当然能够称出来;所以由这+1块碎片能称出1~(3+1)所有的整质量。设第块碎片重为,则有:=2+1;=21+1;两式相减得=3;=1,故各碎片的磅数分别为1,3,9,满足和为40的要求。
299 评论(8)

mayong1689

国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学!
287 评论(12)

相关问答