期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    197

lh8560
首页 > 期刊问答网 > 期刊问答 > 机器视觉的应用论文选题方向怎么写

4个回答 默认排序1
  • 默认排序
  • 按时间排序

Junhepharma

已采纳
可以用到很多方面啊,电子行业,医药行业,汽车行业,包装行业,物流行业等等,隶属自动化行业,

机器视觉的应用论文选题方向怎么写

271 评论(10)

0987wang

哥哥,是这样的,机器视觉,最基本是配合工业机器人使用,应用是非常广的
272 评论(8)

subdivision

什么是机器视觉?简单来说,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。机器视觉的运用领域由于机器视觉可以快速获取大量信息,而且易于自动处理,人们逐渐将机器视觉系统广泛地用于天文行业、 医药行业、交通航海行业以及军事行业领域等。在国外,机器视觉的应用相当普及,主要集中在电子、汽车、冶金、食品饮料、零配件装配及制造等行业。机器视觉系统在质量检测的各个方间已经得到广泛的应用。机器视觉产品刚刚起步,目前主要集中在制药、印刷、包装、食品饮料等行业。随着国内制造业的快速发展,对于产品检测和质最的要求不断提高,各行各业对图像和机器视觉技术的工业自动需求将越来越大,因此机器视觉在未来制造业中将会有很大的发展空间。下面我们来看看机器视觉具体有哪些应用领域军事航空着陆姿势、起飞状态;弹道/火箭喷射、子弹出膛、火炮发射;爆破分析炮弹爆炸、破片分析、爆炸防御;撞击、分离以及各种武器性能测试分析,点火装置工作过程等。科学研究燃烧、敷层过程测量。结晶;PIV的流体、粒子研究;生产领域产品喷溅、封装、压轧、织网、膜压、绕线、切削、裁剪、采掘;机械运转动作分析或故障诊断等。生物运动学、生物力学;步态分析、康复物理治疗等。生物运动分析:人体、动物动作分析,昆虫或鸟类翅膀运动;医疗医疗器具、细胞、瓣膜运动;出血观察;吞咽、呼吸道鞭毛运动等。影视电影、广告、动画特技等如高速动作特技。体育运动广播、体育运动辅导和训练等。跑步、跳远、跨栏、体操、跳水等姿势动作分析;汽车安全气囊测量;汽车碰撞研究;托运器、轮胎、限制器等组件动作。专业领域工程故障、动态特性、破碎、震动分析;落摔分析、冲击分析、产品开发研究分析、力学和弹性分析等。
161 评论(8)

l矿泉水

图像识别应用图像识别,是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。图像识别在机器视觉工业领域中最典型的应用就是二维码的识别了,二维码就是我们平时常见的条形码中最为普遍的一种。将大量的数据信息存储在这小小的二维码中,通过条码对产品进行跟踪管理,通过机器视觉系统,可以方便对各种材质表面的条码进行识别读取,大大提高了现代化生产的效率。图像检测应用检测是机器视觉工业领域最主要的应用之一,几乎所有产品都需要检测,而人工检测存在着较多的弊端,人工检测准确性低,长时间工作的话,准确性更是无法保证,而且检测速度慢,容易影响整个生产过程的效率。因此,机器视觉在图像检测的应用方面也非常的广泛,例如:硬币边缘字符的检测。2000年10月新发行的第五套人民币中,壹圆硬币的侧边增强了防伪功能,鉴于生产过程的严格控制要求,在造币的最后一道工序上安装了视觉检测系统;印刷过程中的套色定位以及较色检查、包装过程中的饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等;玻璃瓶的缺陷检测。机器视觉系统对玻璃瓶的缺陷检测,也包括了药用玻璃瓶范畴,也就是说机器视觉也涉及到了医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。视觉定位应用视觉定位要求机器视觉系统能够快速准确地找到被测零件并确认其位置。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。物体测量应用机器视觉工业应用最大的特点就是其非接触测量技术,同样具有高精度和高速度的性能,但非接触无磨损,消除了接触测量可能造成的二次损伤隐患。常见的测量应用包括齿轮、接插件、汽车零部件、IC元件管脚、麻花钻、罗定螺纹检测等。物体分拣应用实际上,物体分拣应用是建立在识别、检测之后一个环节,通过机器视觉系统将图像进行处理,实现分拣。在机器视觉工业应用中常用于食品分拣、零件表面瑕疵自动分拣、棉花纤维分拣
91 评论(12)

相关问答