郭晓曼
实时图形学和图形处理器新的光照模型和渲染方法虚拟现实和虚拟现实设备(如:空间全息成像,触觉传感器,嗅觉传感器,立体声学,空间定位设备) 场可视化和体图形学(医学图像立体显示) S计算几何(算法几何,区别于以前中的计算几何概念) 动画理论(元球动画,动力动画,粒子系统)图形仿真(如:自然景物模拟,柔体仿真,分形树,流体仿真) 计算机视觉(主要指机器视觉,主题是图像序列到3D模型转换如:多目视觉,运动视觉等,本来应该归到模式识别类里面) 全息摄影术(如同心拼图法)在图像和模式识别领域的前沿有:图像处理、图像压缩、图像分割、边沿检测、图像矢量化、图像匹配、模式识别、遥感图像处理、图像恢复、视频处理。 
1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。