期刊问答网 论文发表 期刊发表 期刊问答

气象学中的数学问题论文高中

  • 回答数

    3

  • 浏览数

    158

dufengyy
首页 > 期刊问答网 > 期刊问答 > 气象学中的数学问题论文高中

3个回答 默认排序1
  • 默认排序
  • 按时间排序

POsble

已采纳
气象学中的几例数学应用问题在气象学中,经常碰到测量降雨量,预报台风,沙暴,寒流中心运动规律,预测水位上涨等问题这类问题常转化为数学问题来求解,现举例说明一,测量降雨量例1 降雨量是指水平地面单位面积上所降雨水的深度现用上口直径为32cm,底面直径为24cm,深为35cm的圆台形水桶来测量降雨量如果在一次降雨过程中,此桶中的雨水深为桶深的四分之一,则此次降雨量为多少mm (精确到1mm)分析:要求降雨量,只要求出单位面积上所降雨水的深度,而单位面积上雨水的深度可通过等积来求解解:由题意知,圆台形水桶的水深为O1O2=354cm,又因为A1B1A2B1=A BA2B,所以A1B1=A B A2B1A2B=(16 - 12)*35435= 1,所以,水面半径O1A1= 12 + 1 = 13(cm),故桶中雨水的体积是V水=13π(122+ 12×13 + 132)×354=1641512π(cm)因为,水桶上口的面积为S上=π 162= 256π(cm2),设每1cm2的降雨量是xcm,则x=V水S上=16415π121256π≈513(cm)所以,降雨量约为说明:此题除了要明确降雨量的概念外,还需要深刻理解题意,得出降雨量的计算方法为何用盛得雨水的体积除以桶口面积,而不是除以水面面积或者其他面积 这里的分析,推理有一定的难度其实在降雨过程中,雨水是"落入"水桶口里,因此盛得雨水体积的多少只与水桶口的大小有关,与桶本身的形状无关由此不难理解上述计算降雨量的方法二,台风预报例2 据气象台预报,在S岛正东300km的A处有一个台风中心形成,并以每小时40km的速度向西北方向移动,在距台风中心250km以内的地区将受其影响问:从现在起经过多长的时间台风将影响S岛,并持续多长时间 分析:台风中心在运动,它的运动规律是什么 我们可以建立一个坐标系来研究这一问题视S岛为原点,如图2所示,建立平面直角坐标系x Sy,则A处的坐标为(300,0),圆S的方程为x2+y2= 易知当台风中心在圆S上或内部时,台风将影响S岛,又知台风中心以每小时40km的速度向西北方向移动,于是可设台风中心所在射线l的参数方程为x= 300 + 40tcos135°,y= 40tsin135°(t≥0),其中,参数t的物理意义是时间(小时)于是问题转化为"当时间t在何范围内,台风中心在圆S的内部或边界上"解:设台风中心运动的轨迹———射线l的参数方程为x= 300 + 40tcos135°,y= 40tsin135°(t≥0),即台风中心是(300 - 202t,202t)所以,台风中心在圆上或圆内的充要条件是(300 - 202t)2+(202t)2≤2502,解得1199≤t≤04中学数学教学参考 2001年第1~2期所以大约2小时后,S岛将受台风影响,并持续约616小时说明:本题对于研究台风,沙暴,寒流中心运动规律,指导和预防自然灾害的影响有现实意义三,预测水位上涨例3 某地有一座水库,修建时水库的最大容水量设计为在山洪暴发时,预测注入水库的水量Sn(单位:m3)与天数n(n∈N,n≤10)的关系式是Sn= 5000n(n+ 24)此水库原有水量为80000m3,泄水闸每天泄水量为若山洪暴发的第一天就打开泄水闸,问:这10天中堤坝有没有危险 (水库水量超过最大量时堤坝就会发生危险)分析:这是一个关于无理不等式的建模素材,可建立如下的数学模型:5000n(n+ 24)- 4000n> 128000 - 80000,解得n> 8,即水库堤坝在第9天开始会发生危险例4 由于洪峰来临,某抛物线型拱桥下游8公里处有一救援船只接到命令,要求立即到桥的上游执行任务,并告知,此时水流速度为100米/分,拱桥水面跨度为30米,水面以上拱高10米,且桥下水面上涨的高度与时间t(分钟)的平方成正比,比例系数为已知救援船只浮出水面部分的宽,高各3米,问该船至少以多大的速度前进,才能顺利通过(水速视为匀速)分析:要使船能顺利通过,只要桥拱至水面3米处的宽度大于或等于船的宽度即可解:建立如图3所示的直角坐标系,设抛物线型拱桥的方程为y= -ax2(a> 0)将点A(302,- 10)代入抛物线方程,可得a=故抛物线的方程为y= -又设船经t分钟赶至桥洞时,船的宽度正好等于高出水面3米处桥拱的跨度,此时船恰好能通过桥因此,桥下水面升高11000t2米,离水面3米处桥拱曲线上点B的坐标为(32,- 10 + 3+11000t2),代入抛物线方程,可得- 7 +11000t2= -43×(32)2,即t= 2010(分钟),所以,要使船能顺利通过,必须所用的时间小于或等于2010分钟从而设船的速度为v(米/分),则8000v- 100≤2010,即v≥80002010+ 100 = 22615(米/分),所以,船的速度至少为22615米/分才能顺利通过说明:解此题关键是先利用抛物线方程求出其时间t,再解关于速度v的不等式

气象学中的数学问题论文高中

142 评论(13)

hnjzzsz

你要的是数学的话,1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析 ① 从尝试到严谨 ; ② 从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题你要的是化学的话:环境保护1、加快防治“白色污染”的步伐2、对(某某地区)废电池回收情况的调查及建议3、(某某地区)饮用水污染与自然人为因素的关系和控制对策4、(某某地区)空气中SO2对土壤的负面影响及治理措施5、(某某地区)废旧电池的回收与利用6、(某某地区)空气污染现状及对策7、二恶英污染8、浅谈水资源的污染其治理9、汽车尾气的治理及再利用10、如何降低汽车尾气净化的成本11、关于城市垃圾资源化的设想与调查12、塑料及其回收利用13、绿岛的保护14、大气污染与人体健康15、摘掉城市的毒瘤——城市垃圾处理问题研究 16、汽车安全与环保问题17、酸雨与人体健康18、环保与产业的结合19、光污染与光能节约20、汽车与环境21、无污染汽车22、燃煤脱硫的简史及其发展23、日韩发生重大核事故24、臭氧层破坏25、太湖零点行动26、长江上游生态保护27、黄河断流28、西部开发与环境保护29、绿色文明30、淮河治污零点行动31、苏州河综合整治32、电磁辐射污染33、环境与健康生活中的化学问题1、农用生物肥2、新型建筑材料的开发与利用3、生命之源——营养4、家庭包装5、以氢气(天然气)为燃料的灶具6、正确提取热量及饮食7、新型墙对材料的开发和利用8、方便面可食性内分装9、油烟革命10、装潢材料的应用及改进11、金属防锈的研究12、关于低自由基、无毒香烟13、有关饮料中非食用色素的调查14、化学与农村经济15、纯净水是否“纯净”16、环保型防震材料的开发17、维生素王国探秘18、浅淡当今社会之健康饮食19、修正液对人体的危害20、洗涤用品的发展与前景21、研究高二学生早上的饮食、22、食用油中过氧化值的分析23、中学生营养与健康24、研究特别环境下使用的救生衣25、浅谈食盐与人体健康资源利用1、海洋资源的利用与保护2、太阳能发展前景及利用3、创造绿色电能4、未来能源技术5、石油的开发与利用6、绿色能源离我们多远7、食品对大脑的营养供应研究 8、常见荤菜对大脑智力发展的影响研究9、中学附近不洁食品状况调查 10、浅谈可再生能源11、利用太阳能对未来的积极影响 12、潮汐资源的调查研究化学实验(改进)探索与研究1、亚硝酸盐在不同土壤中累积的研究2、眼睛防水的实验3、关于铵盐冷却性能的实验与探讨4、利用废物制取活性炭5、回收、利用旧电池中的有用物质6、再生橡胶废水的胶色研究7、乙酸乙酯的制备与最大化8、酒精可燃与不可燃的临界浓度的研究 9、无污染氯气装置的研究 10、用植物色素制取代用酸碱指示剂及其变色范围的测试 11、有机消毒剂应用的初探12、简析植物提取香水的可行性 13、对蛋白质性质的论证别的我就不知道
337 评论(8)

岁堤春晓

数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:_Pasp?ArticleID=174
239 评论(10)

相关问答