lwj661870
回答
1、题目要新颖。一个新颖的题目可以给人耳目一新的感觉,而且容易给读者和评审人员留下深刻的印象,比较容易通过和发表,因此在题目的选择和设定上要多花些心思。2、范围要小。既然是小论文,那么选题范围就不要太大了,太大太宽泛的论文一个是容易落入俗套,另外就是如果没有深入研究的话,不容易阐述的清晰透彻,给人言之无物的感觉,不如选个小一点的课题深入的说明,这样效果会更好。3、见解独特。对于你所选择的课题你要有自己独特的见解,与众不同的见解是你论文的核心和亮点,如果没有这些那么这篇论文的质量无疑是值得质疑的,很难引起读者的注意和评审的好感。4、系统性强。因为数学是一门以逻辑推理为主的学科,因此你的论述要有很好的系统性,从前到后一步步进行推理,这样的论文即使在文采方面并不出众,也是容易因其逻辑性和系统性而成为一篇好的论文的。 
我有一个喜欢捡瓶子的奶奶。院子里经常堆满了各种各样的废瓶。我经常把瓶子到处乱扔。奶奶看见了,说:“这些瓶子的作用可大了 !我从小没上过学,就是靠这些瓶子学会算术的!”我一点都不相信。 奶奶摸着我的头,笑着说:“不信我们比比!”我说:“好的!”我还比不过你吗?我在班上数学还不赖的。我赶紧叫爸爸来做裁判。爸爸拿了十几个瓶子,放在地上说:“小塑料瓶是5分,易拉罐1毛,大塑料瓶2毛。”比赛开始了,我一个一个地加了起来。“1毛,2毛,2毛5,……,我算出来了,是3元5角。”我很得意地朝奶奶笑笑。谁知爸爸给了我张纸条,上面写着“5”。我这才明白奶奶早就算好了。我不服气地问奶奶:“你怎么这么快呀?”奶奶说:“你看,如果你先把它们分一下,小瓶一类,易拉罐一类,大瓶一类,不就快了吗?”“对呀,老师教我们数小棒时,把小棒10个一捆,不是和数瓶子一个道理吗?”“奶奶,我来帮你算算你一共收了多少钱的瓶子?”“好呀!我的孙女会帮我做事了。”我先将它们分类,然后十个一算,不到十分钟,我就算好了。我高兴极了。爸爸笑着对我说:“青青真棒!”我也笑着对奶奶、爸爸说:“我发现数学真得很有用,我要好好学数学!”
数学小论文关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
很简单啊,先开头接着过程最后结尾o(∩_∩)开个玩笑。 首先题目要吸引人,很简单的,只要你智商有20以上就写得出来 o(∩_∩)接着一个很简单的引入,中间加入一些有规律的式子或定义,或者发现,然后写出自己的见解。如果是有规律的式子那么可以总结出公式(用n代替);如果是定义,那就举例说明一下定义;如果是自己的发现,那就写出发现的内容和它与数学的关系。结尾也可以很简单,可以总结,可以感叹。以下是我自己写的一篇论文可以参考参考哦 平方的奥妙 最近我发现,平方有很多的奥妙,在求这个数的平方时,我发现:一、1 =0 +(0+1)=12 =1 +(1+2)=4 3 =2 +(2+3)=9 …… 10 =9 +(9+10)=100 11 =10 +(10+11)=121 12 =11 +(11+12)=144 …… 20 =19 +(19+20)400 21 =20 +(20+21)=441 22 =21 +(21+22)=484 …… 总而言之,一个正整数的平方等于比它小1的数的平方加上这两个数的和的结果:n =(n-1) +(n-1+n) 利用这条公式,我又进行推算,如果n=0和负整数,是否合适这条公式:0 =(-1) +((-1)+0)=0(-1) =(-2) +((-2)+(-1))=1(-2) =(-3) +((-3)+(-2))=4(-3) =(-4) +((-4)+(-3))=9(-4) =(-5) +((-5)+(-4))=16从这几个算式看出,0和负整数也符合这条公式。通过这些说明n =(n-1) +(n-1+n)适合所有的整数。二、一个算式:(3+4) =?这道题看似很简单,但是如果换成是字母,如:(A+B) =?那你还会做吗?(A+B) =(A+B)×(A+B)把后面的(A+B)看成一个整体,利用乘法分配律,得=A×(A+B)+ B×(A+B) 再利用乘法分配律,得A +AB+BA+B 合并同类项,得A +2AB +B 所以(A+B) = A +2AB +B 最后验算一次。那如果算式是(A-B) =?是否也能用刚才的方法算出来呢?(A-B) =(A-B) ×(A-B) = A×(A-B) -B×(A-B) =A -AB-BA+B = A -2AB+B 最后验算一次。看来平方里也有这么多得奥秘,值得我们细细观察!